
Public

SMART CONTRACT AUDIT REPORT

for

BlackholeDEX (Algebra Pools)

Prepared By: Xiaomi Huang

PeckShield
May 24, 2025

1/23 PeckShield Audit Report #: 2025-099

contact@peckshield.com

Public

Document Properties

Client BlackholeDEX
Title Smart Contract Audit Report
Target BlackholeDEX
Version 1.0
Author Xuxian Jiang
Auditors Matthew Jiang, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 May 24, 2025 Xuxian Jiang Final Release
1.0-rc April 12, 2025 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/23 PeckShield Audit Report #: 2025-099

Public

Contents

1 Introduction 4
1.1 About BlackholeDEX . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Incorrect Proposal Cancellation Logic in BlackGovernor 11
3.2 Possible Denial-of-Service in Genesis Pool Approval 12
3.3 Revisited _burn() Logic in VotingEscrow . 13
3.4 Incorrect Fee-Claiming Logic in GaugeCL . 14
3.5 Lack of _periodFinish Update Upon Reward Notification in GaugeCL 15
3.6 Incorrect getReward() Logic in GaugeCL . 17
3.7 Incorrect ve_for_at() Logic in RewardsDistributor 17
3.8 Inconsistent Pair Logic in RouterV2 . 19
3.9 Improved recoverERC20() Logic In GaugeExtraRewarder 20

4 Conclusion 22

References 23

3/23 PeckShield Audit Report #: 2025-099

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the BlackholeDEX

protocol, we outline in the report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About BlackholeDEX

BlackholeDEX is designed to allow low-cost, low-slippage trades on uncorrelated or tightly correlated
assets. It is in essence a DEX that is built starting from Solidly/Velodrome with a unique AMM. This
audit covers the unique support of adding custom Algebra pools. The basic information of audited
contracts is as follows:

Table 1.1: Basic Information of BlackholeDEX

Item Description
Name BlackholeDEX

Website https://blackhole.xyz/
Type Smart Contract

Language Solidity
Audit Method Whitebox

Latest Audit Report May 24, 2025

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit. Note the given repository will interact with external Algebra pools and this audit does not
cover the Algebra pools.

• https://github.com/BlackHoleDEX/SmartContracts.git (52e33af, 0d43a8e)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

4/23 PeckShield Audit Report #: 2025-099

Public

• https://github.com/BlackHoleDEX/SmartContracts.git (8585039)

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [6]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact, and can be accordingly classified
into four categories, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further

5/23 PeckShield Audit Report #: 2025-099

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/23 PeckShield Audit Report #: 2025-099

Public

deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/23 PeckShield Audit Report #: 2025-099

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/23 PeckShield Audit Report #: 2025-099

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the design and implementation of the BlackholeDEX

protocol smart contracts. During the first phase of our audit, we study the smart contract source code
and run our in-house static code analyzer through the codebase. The purpose here is to statically
identify known coding bugs, and then manually verify (reject or confirm) issues reported by our
tool. We further manually review business logics, examine system operations, and place DeFi-related
aspects under scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 3

Low 5

Informational 0

Total 9

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/23 PeckShield Audit Report #: 2025-099

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
3 medium-severity vulnerability, and 5 low-severity vulnerabilities.

Table 2.1: Key Audit Findings

ID Severity Title Category Status
PVE-001 Medium Incorrect Proposal Cancellation Logic in

BlackGovernor
Business Logic Resolved

PVE-002 Low Possible Denial-of-Service in Genesis
Pool Approval

Business Logic Resolved

PVE-003 Medium Revisited _burn() Logic in VotingE-
scrow

Business Logic Resolved

PVE-004 High Incorrect Fee-Claiming Logic in
GaugeCL

Business Logic Resolved

PVE-005 Medium Lack of _periodFinish Update Upon Re-
ward Notification in GaugeCL

Business Logic Resolved

PVE-006 Low Incorrect getReward() Logic in GaugeCL Business Logic Resolved
PVE-007 Low Incorrect ve_for_at() Logic in Rewards-

Distributor
Business Logic Resolved

PVE-008 Low Inconsistent Pair Logic in RouterV2 Business Logic Resolved
PVE-009 Low Improved recoverERC20() Logic In

GaugeExtraRewarder
Coding Practices Resolved

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/23 PeckShield Audit Report #: 2025-099

Public

3 | Detailed Results

3.1 Incorrect Proposal Cancellation Logic in BlackGovernor

• ID: PVE-001

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: BlackGovernor

• Category: Business Logic [4]

• CWE subcategory: CWE-841 [2]

Description

The BlackholeDEX protocol has the built-in governance support. In the process of reviewing the
governance logic in BlackGovernor, we notice a business logic issue when canceling a pending proposal.

In the following, we show the implementation of the related cancel() routine. It has a rather
straightforward logic in validating the given proposal parameters, checking the proposal state, and
cancelling the proposal if all conditions for cancellation are met. In particular, there is a need
to ensure that only a pending proposal can be cancelled. With that, we need to validate the
following statement, i.e., state(_proposalId)== ProposalState.Pending, not current state(proposalId

)== ProposalState.Pending (line 85).

67 function cancel(
68 address [] memory targets ,
69 uint256 [] memory values ,
70 bytes[] memory calldatas ,
71 bytes32 epochTimeHash
72) public virtual override returns (uint256 proposalId) {
73 address proposer = _msgSender ();
74 uint256 _proposalId = hashProposal(
75 targets ,
76 values ,
77 calldatas ,
78 epochTimeHash
79);
80 require(
81 state(proposalId) == ProposalState.Pending ,

11/23 PeckShield Audit Report #: 2025-099

Public

82 "Governor: too late to cancel"
83);
84 require(
85 proposer == _proposals[_proposalId].proposer ,
86 "Governor: only proposer can cancel"
87);
88 return _cancel(targets , values , calldatas , epochTimeHash);
89 }

Listing 3.1: BlackGovernor::cancel()

Recommendation Improve the above routine to properly validate a pending proposal for
cancellation.

Status This issue has been fixed in the following commit: abf57b8.

3.2 Possible Denial-of-Service in Genesis Pool Approval

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: GenesisPoolManager

• Category: Business Logic [4]

• CWE subcategory: CWE-841 [2]

Description

BlackholeDEX has the unique support of a special pool type, i.e., genesis pool. This type of pool is
proposed to facilitate new token launch by allowing for crowd-sourcing. While reviewing the lifecycle
of genesis pools, we notice a possible denial-of-service issue that may block a genesis pool from
being launched.

In the following, we show the implementation of the related approveGenesisPool() routine. This
routine is used to approve a genesis pool and move the pool to a new PRE_LISTING state. The pool
approval will create a new pair address (line 151) based on nativeToken, fundingToken, and stable

parameters. However, if the new pair creation is not successful, the pool approval transation will be
reverted, hence the respective genesis pool is blocked.

143 function approveGenesisPool(address nativeToken) external Governance {
144 require(nativeToken != address (0), "0x native");
145 address genesisPool = genesisFactory.getGenesisPool(nativeToken);
146 require(genesisPool != address (0), ’0x pool’);

148 GenesisInfo memory genesisInfo = IGenesisPool(genesisPool).getGenesisInfo ();
149 require(genesisInfo.startTime + genesisInfo.duration - BlackTimeLibrary.

NO_GENESIS_DEPOSIT_WINDOW > block.timestamp , "time");

12/23 PeckShield Audit Report #: 2025-099

https://github.com/BlackHoleDEX/SmartContracts/pull/131/commits/abf57b8

Public

151 address pairAddress = pairFactory.createPair(nativeToken , genesisInfo.
fundingToken , genesisInfo.stable);

152 pairFactory.setGenesisStatus(pairAddress , true);

154 liveNativeTokens.push(nativeToken);
155 liveNativeTokensIndex[nativeToken] = liveNativeTokens.length; // because default

value is 0, so starting with 1

157 IGenesisPool(genesisPool).approvePool(pairAddress);
158 }

Listing 3.2: GenesisPoolManager::approveGenesisPool()

Recommendation Improve the above routine to explicitly check the pair presence and only
create a new one if it does not exist.

Status This issue has been fixed in the following commit: e29ad71.

3.3 Revisited _burn() Logic in VotingEscrow

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: VotingEscrow

• Category: Business Logic [4]

• CWE subcategory: CWE-841 [2]

Description

The BlackholeDEX protocol has a veNFT implementation that escrows ERC-20 tokens in the form of
an ERC-721 NFT. While reviewing the escrow logic, we notice the implementation has an issue when
burning an ERC-721 NFT.

In the following, we show the implementation of the related _burn() routine. It has the most basic
functionality in clearing the approval state, adjusting the associated delegation, and then removing
the voting token id. However, the delegation adjustment needs to be performed after the token
removal, not before. In other words, the call to moveTokenDelegates() (line 548) should occur after
the _removeTokenFrom() call (line 551).

540 function _burn(uint _tokenId) internal {
541 require(_isApprovedOrOwner(msg.sender , _tokenId), "IA");

543 address owner = ownerOf(_tokenId);

545 // Clear approval
546 approve(address (0), _tokenId);

13/23 PeckShield Audit Report #: 2025-099

https://github.com/BlackHoleDEX/SmartContracts/pull/130/commits/e29ad71

Public

547 // checkpoint for gov
548 VotingDelegationLib.moveTokenDelegates(cpData , delegates(owner), address (0),

_tokenId , ownerOf);
549 // Remove token
550 // _removeTokenFrom(msg.sender , _tokenId);
551 _removeTokenFrom(owner , _tokenId);

553 emit Transfer(owner , address (0), _tokenId);
554 }

Listing 3.3: VotingEscrow::_burn()

Recommendation Improve the above routine to properly adjust the internal order when a
voting token is burned.

Status This issue has been fixed in the following commit: 7a074ff.

3.4 Incorrect Fee-Claiming Logic in GaugeCL

• ID: PVE-004

• Severity: High

• Likelihood: High

• Impact: Medium

• Target: GaugeCL

• Category: Business Logic [4]

• CWE subcategory: CWE-841 [2]

Description

The BlackholeDEX protocol has the unique support of Algebra pools. In the process of reviewing the
associated gauge logic (in GaugeCL) paired with supported Algebra pools, we notice a business logic
issue when claiming a pending fee.

In the following, we show the implementation of the related _claimFees() routine. It has a
rather straightforward logic in claiming the pool fee and sending to the gauge-specific internal bribe
contract. However, it comes to our attention that the token1-associated fee should be calculated as
claimed1 -= _dibsFeeToken1;, not current claimed0 -= _dibsFeeToken1; (line 221).

195 function _claimFees () internal returns (uint256 claimed0 , uint256 claimed1) {
196 if (! isForPair) {
197 return (0, 0);
198 }

200 address _token0 = algebraPool.token0 ();
201 address _token1 = algebraPool.token1 ();
202 // Fetch fee from the whole epoch which just ended and transfer it to internal

Bribe address.
203 claimed0 = IERC20(_token0).balanceOf(address(this));

14/23 PeckShield Audit Report #: 2025-099

https://github.com/BlackHoleDEX/SmartContracts/pull/131/commits/7a074ff

Public

204 claimed1 = IERC20(_token1).balanceOf(address(this));

206 if (claimed0 > 0 claimed1 > 0) {
207 // Deduct dibsPercentage from fee accrued and transfer to dibs address(

Foundation address)

209 uint256 referralFee = IGaugeFactoryCL(factory).dibsPercentage ();
210 address dibs = IGaugeFactoryCL(factory).dibs();
211 uint256 _dibsFeeToken0 = (dibs != address (0)) ? (claimed0 * referralFee /

10000) : 0;
212 uint256 _dibsFeeToken1 = (dibs != address (0)) ? (claimed1 * referralFee /

10000) : 0;

214 if (_dibsFeeToken0 > 0) {
215 _safeTransfer(_token0 , dibs , _dibsFeeToken0); // Transfer dibs fees
216 claimed0 -= _dibsFeeToken0;
217 }

219 if (_dibsFeeToken1 > 0) {
220 _safeTransfer(_token1 , dibs , _dibsFeeToken1); // Transfer dibs fees
221 claimed0 -= _dibsFeeToken1;
222 }

224 uint256 _fees0 = claimed0;
225 uint256 _fees1 = claimed1;
226 ...
227 }
228 ...
229 }

Listing 3.4: GaugeCL::_claimFees()

Recommendation Improve the above routine to properly claim the pool fees.

Status This issue has been fixed in the following PR: 180.

15/23 PeckShield Audit Report #: 2025-099

https://github.com/BlackHoleDEX/SmartContracts/pull/180

Public

3.5 Lack of _periodFinish Update Upon Reward Notification in
GaugeCL

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: GaugeCL

• Category: Business Logic [4]

• CWE subcategory: CWE-841 [2]

Description

As mentioned earlier, BlackholeDEX has the unique support of Algebra pools, which greatly expands
the liquidity reach to more recent DEX engines. While reviewing the logic to add extra rewards, we
notice an issue that does not properly update the reward parameter, _periodFinish, hence corrupting
subsequent reward dessimination.

In the following, we show the implementation of the related notifyRewardAmount() routine. This
routine is used to transfer emission to farming virtual pool address. While current implementation has
properly updated the reward rates and synchronized with the associated Algebra virtual pool, it does
not update another important risk parameter, _periodFinish. This lack of udpate may completely
mess up the subsequent reward dissemination.

144 function notifyRewardAmount(address token , uint256 reward) external nonReentrant
isNotEmergency onlyDistribution {

145 require(token == address(rewardToken), "not rew token");
146 // Transfer emission to Farming Virtual Pool address
147 if (block.timestamp >= _periodFinish) {
148 rewardRate = reward / DURATION;
149 } else {
150 uint256 remaining = _periodFinish - block.timestamp;
151 uint256 leftover = remaining * rewardRate;
152 rewardRate = (reward + leftover) / DURATION;
153 }
154 (IERC20Minimal rewardTokenAdd , IERC20Minimal bonusRewardTokenAdd , IAlgebraPool

pool , uint256 nonce) =
155 algebraEternalFarming.incentiveKeys(poolAddress);
156 IncentiveKey memory incentivekey = IncentiveKey(rewardTokenAdd ,

bonusRewardTokenAdd , pool , nonce);
157 bytes32 incentiveId = IncentiveId.compute(incentivekey);

159 // set RewardRate to AlgebraVirtual Pool
160 (,,address virtualPoolAddress ,,,) = algebraEternalFarming.incentives(incentiveId

);
161 (,uint128 bonusRewardRate) = IAlgebraEternalVirtualPool(virtualPoolAddress).

rewardRates ();

16/23 PeckShield Audit Report #: 2025-099

Public

163 algebraEternalFarming.setRates(incentivekey , uint128(rewardRate),
bonusRewardRate);

165 // transfer emission Reward to Algebra Virtual Pool
166 algebraEternalFarming.addRewards(incentivekey , uint128(reward), 0);
167 emit RewardAdded(reward);
168 }

Listing 3.5: GaugeCL::notifyRewardAmount()

Recommendation Improve the above routine to timely update all related reward parameters,
including _periodFinish.

Status This issue has been fixed in the following PR: 180.

3.6 Incorrect getReward() Logic in GaugeCL

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: GaugeCL

• Category: Business Logic [4]

• CWE subcategory: CWE-841 [2]

Description

The Algebra pool support in BlackholeDEX has another issue. In particular, the related farming logic
allows for the distribution of two reward tokens and one of them is named as bonus reward. When
these two reward tokens are being claimed, our analysis shows the logic should be improved.

In the following, we show the implementation of the related getReward() routine. The last
parameter of this routine, i.e., isBonusReward, is used to indicate which reward token is claimed. It
comes to our attention that when isBonusReward = true, the claim is intended for the bonus reward,
not the base one (line 140).

137 function getReward(uint256 tokenId , uint256 amountRequested , bool isBonusReward)
public nonReentrant onlyDistribution {

138 address owner = nonfungiblePositionManager.ownerOf(tokenId);
139 (IERC20Minimal rewardTokenAdd , IERC20Minimal bonusRewardTokenAdd ,,) =

algebraEternalFarming.incentiveKeys(poolAddress);
140 farmingCenter.claimReward(isBonusReward == true ? rewardTokenAdd :

bonusRewardTokenAdd , owner , amountRequested);
141 emit Harvest(owner , amountRequested);
142 }

Listing 3.6: GaugeCL::getReward()

17/23 PeckShield Audit Report #: 2025-099

https://github.com/BlackHoleDEX/SmartContracts/pull/180

Public

Recommendation Improve the above routine to properly claim the intended rewards.

Status This issue has been fixed in the following PR: 180.

3.7 Incorrect ve_for_at() Logic in RewardsDistributor

• ID: PVE-007

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: RewardsDistributor

• Category: Business Logic [4]

• CWE subcategory: CWE-841 [2]

Description

To compensate the users who lock their governance tokens, BlackholeDEX has a RewardsDistributor

contract to provide necessary token emissions. Within this RewardsDistributor contract, there is a
getter function ve_for_at() to query the voting balance of the given tokenId at a specific timestamp.
Our analysis shows its implementation is inaccurate.

120 function ve_for_at(uint _tokenId , uint _timestamp) external view returns (uint) {
121 address ve = voting_escrow;
122 uint max_user_epoch = IVotingEscrow(ve).user_point_epoch(_tokenId);
123 uint epoch = _find_timestamp_user_epoch(ve, _tokenId , _timestamp , max_user_epoch

);
124 IVotingEscrow.Point memory pt = IVotingEscrow(ve).user_point_history(_tokenId ,

epoch);
125 return Math.max(uint(int256(pt.bias - pt.slope * (int128(int256(_timestamp - pt.

ts)))) + int256(pt.permanent + pt.smNFT + pt.smNFTBonus)), 0);
126 }

Listing 3.7: RewardsDistributor::ve_for_at()

To elaborate, we show above the implementation of this ve_for_at() routine. While it properly
retrieves the user balance in IVotingEscrow.Point, the voting power needs to be properly computed.
In particular, we need to differentiate the lock type, i.e., smNFT, permanent, or decaying. An example
revision is shown as below:

120 function ve_for_at(uint _tokenId , uint _timestamp) external view returns (uint) {
121 address ve = voting_escrow;
122 uint max_user_epoch = IVotingEscrow(ve).user_point_epoch(_tokenId);
123 uint epoch = _find_timestamp_user_epoch(ve, _tokenId , _timestamp , max_user_epoch

);
124 IVotingEscrow.Point memory pt = IVotingEscrow(ve).user_point_history(_tokenId ,

epoch);

127 if (pt.smNFT != 0){

18/23 PeckShield Audit Report #: 2025-099

https://github.com/BlackHoleDEX/SmartContracts/pull/180

Public

128 return pt.smNFT + pt.smNFTBonus;
129 }
130 else if (pt.permanent != 0) {
131 return lpt.permanent;
132 }
133 else {
134 pt.bias -= pt.slope * int128(int256(_timestamp) - int256(pt.ts));
135 if (pt.bias < 0) {
136 lpt = 0;
137 }
138 return uint(int256(pt.bias));
139 }
140 }

Listing 3.8: Revised RewardsDistributor::ve_for_at()

Recommendation Improve the above routine to properly calculate the voting balance of a
given tokenId at a specific timestamp.

Status This issue has been resolved as the above function has been removed.

3.8 Inconsistent Pair Logic in RouterV2

• ID: PVE-008

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: RouterV2

• Category: Business Logic [4]

• CWE subcategory: CWE-841 [2]

Description

To facilitate the token swaps, BlackholeDEX protocol has a convenient helper contract, i.e., RouterV2.
This router contract has properly supported the stable/volatile pairs. However, the new support of
Algebra pools with concentrated liquidity requires necessary revision to the RouterV2 contract.

In the following, we show the implementation of an example swapExactTokensForTokensSimple()

routine. As the name indicates, this routine is used to swap a given input token for the intended
output token. And current implementation only supports the stable/volatile pair, but not con-
centrated pools (line 557). Note it also affects other routines, including swapExactETHForTokens(),
swapExactTokensForETH(), and _swapSupportingFeeOnTransferTokens().

541 function swapExactTokensForTokensSimple(
542 uint amountIn ,
543 uint amountOutMin ,
544 address tokenFrom ,
545 address tokenTo ,

19/23 PeckShield Audit Report #: 2025-099

Public

546 bool stable ,
547 address to ,
548 uint deadline
549) external ensure(deadline) returns (uint[] memory amounts) {
550 route[] memory routes = new route [](1);
551 routes [0]. from = tokenFrom;
552 routes [0].to = tokenTo;
553 routes [0]. stable = stable;
554 amounts = getAmountsOut(amountIn , routes);
555 require(amounts[amounts.length - 1] >= amountOutMin , ’BaseV1Router:

INSUFFICIENT_OUTPUT_AMOUNT ’);
556 _safeTransferFrom(
557 routes [0].from , msg.sender , pairFor(routes [0].from , routes [0].to, routes [0].

stable), amounts [0]
558);
559 _swap(amounts , routes , to);
560 }

Listing 3.9: RouterV2::swapExactTokensForTokensSimple()

Recommendation Improve the above routines to properly support concentrated pools.

Status This issue has been resolved in the following commit: 37ad1e2.

3.9 Improved recoverERC20() Logic In GaugeExtraRewarder

• ID: PVE-009

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: GaugeExtraRewarder

• Category: Coding Practices [3]

• CWE subcategory: CWE-663 [1]

Description

The gauge support in BlackholeDEX protocol allows for the use of extra rewards. In the process of
examining the extra rewarding mechanism, we notice an issue when recovering the funds from the
contract.

In the following, we show the implementation of the related recoverERC20() routine. It has a
rather straightforward logic in recovering the funds in the contract. However, when the token to be
recovered is the intended reward token, it has an implicit assumption that lastDistributedTime is not
less than current timestamp, i.e., block.timestamp. Otherwise, the computation of time left will be
reverted (line 183). This assumption is not necessary and should be eliminated.

174 function recoverERC20(uint amount , address token) external onlyOwner {
175 require(amount > 0, "amount > 0");

20/23 PeckShield Audit Report #: 2025-099

https://github.com/BlackHoleDEX/SmartContracts/commit/37ad1e2

Public

176 require(token != address (0), "addr0");
177 uint balance = IERC20(token).balanceOf(address(this));
178 require(balance >= amount , "not enough tokens");

180 // if token is = reward and there are some (rps > 0), allow withdraw only for
remaining rewards and then set new rewPerSec

181 if(token == address(rewardToken) && rewardPerSecond != 0){
182 updatePool ();
183 uint timeleft = lastDistributedTime - block.timestamp;
184 uint notDistributed = rewardPerSecond * timeleft;
185 require(amount <= notDistributed , ’too many rewardToken ’);
186 rewardPerSecond = (notDistributed - amount) / timeleft;
187 }
188 IERC20(token).safeTransfer(msg.sender , amount);

190 }

Listing 3.10: GaugeExtraRewarder::recoverERC20()

Recommendation Improve the above routine to properly remove unwanted assumption.

Status This issue has been resolved in the following commit: 8585039.

21/23 PeckShield Audit Report #: 2025-099

https://github.com/BlackHoleDEX/SmartContracts/commit/8585039

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the BlackholeDEX protocol, which
is designed to allow low-cost, low-slippage trades on uncorrelated or tightly correlated assets. It is in
essence a DEX that is built starting from Solidly/Velodrome with a unique AMM. This audit covers the
unique support of adding custom Algebra pools. The current code base is well structured and neatly
organized. Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

22/23 PeckShield Audit Report #: 2025-099

Public

References

[1] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[2] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[3] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[4] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

23/23 PeckShield Audit Report #: 2025-099

https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About BlackholeDEX
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Incorrect Proposal Cancellation Logic in BlackGovernor
	Possible Denial-of-Service in Genesis Pool Approval
	Revisited _burn() Logic in VotingEscrow
	Incorrect Fee-Claiming Logic in GaugeCL
	Lack of _periodFinish Update Upon Reward Notification in GaugeCL
	Incorrect getReward() Logic in GaugeCL
	Incorrect ve_for_at() Logic in RewardsDistributor
	Inconsistent Pair Logic in RouterV2
	Improved recoverERC20() Logic In GaugeExtraRewarder

	Conclusion
	References

