
Addendum to Code4rena Audit Report

Subject: Resolution and Judge Validation of Issues S122 and S410​
Project: BLACKHOLE DEX​
Original Audit: https://code4rena.com/reports/2025-05-blackhole​
Date: 07/03/2025

Overview:

This document serves as an addendum to the public Code4rena audit report <>. This is
issued by BLACKHOLE DEX with approval from MrPotatoMagic who served as the panel of
judges for the C4 competitive audit mitigation, clarifying the status of two previously listed
issues(M-05 and M-10) which were marked as unmitigated in the final C4 audit report.
Based on a follow-up and additional courtesy review conducted by MrPotatoMagic we would
like to confirm that M-05 and M-10 have been mitigated. Details furnished below.

[M-05] Griefing attack on
GenesisPoolManager.sol::depositNativeToke

n leading to Denial of Service

Submitted by FavourOkerri, also found by AvantGard

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d6347
8c4164d9f608e91/contracts/factories/GenesisPoolFactory.sol#L56-L67

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d6347
8c4164d9f608e91/contracts/factories/PairFactory.sol#L139-L151

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d6347
8c4164d9f608e91/contracts/GenesisPoolManager.sol#L100-L116

Finding description

The process of depositing native token to a Genesis Pool is vulnerable to a griefing
attack, leading to a denial of service (DoS) for legitimate pool creations.

The vulnerability arises from the interaction of the following factors:

https://github.com/mrpotatomagic/audit-portfolio/tree/main
https://code4rena.com/audits/2025-05-blackhole/submissions/F-166
https://code4rena.com/audits/2025-05-blackhole/submissions/F-166
https://code4rena.com/audits/2025-05-blackhole/submissions/F-166
https://code4rena.com/audits/2025-05-blackhole/submissions/S-122
https://code4rena.com/audits/2025-05-blackhole/submissions/S-348
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/factories/GenesisPoolFactory.sol#L56-L67
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/factories/GenesisPoolFactory.sol#L56-L67
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/factories/PairFactory.sol#L139-L151
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/factories/PairFactory.sol#L139-L151
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolManager.sol#L100-L116
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/GenesisPoolManager.sol#L100-L116

●​ Public information: The nativeToken and fundingToken addresses intended for
a new Genesis Pool become public information when the
GenesisPoolFactory.createGenesisPool transaction enters the mempool or
through the GenesisCreated event it emits.

●​ Unrestricted pair creation: The pairFactory.createPair function allows any
external actor to create a new liquidity pair for any given tokenA, tokenB, and
stable combination, provided a pair for that combination doesn't already exist.

function createPair(address tokenA, address tokenB, bool stable) external
returns (address pair) {

 require(tokenA != tokenB, "IA"); // Pair: IDENTICAL_ADDRESSES

 (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB)
: (tokenB, tokenA);

 require(token0 != address(0), "ZA"); // Pair: ZERO_ADDRESS

 require(getPair[token0][token1][stable] == address(0), "!ZA");

 pair = IPairGenerator(pairGenerator).createPair(token0, token1,
stable);

 getPair[tokenA][tokenB][stable] = pair;

 getPair[tokenB][tokenA][stable] = pair; // Store in reverse direction

 allPairs.push(pair);

 isPair[pair] = true;

 emit PairCreated(token0, token1, stable, pair, allPairs.length);

 }

●​ Vulnerable validation: In GenesisPoolManager.depositNativeToken(), the
protocol checks whether the pair already exists. If so, it requires that both
token balances in the pair are zero — but does not verify whether the pair was
created by the protocol itself.

function depositNativeToken(

 address nativeToken,

 uint256 auctionIndex,

 GenesisInfo calldata genesisPoolInfo,

 TokenAllocation calldata allocationInfo

) external nonReentrant returns (address genesisPool) {

 //.................code

 address pairAddress = pairFactory.getPair(nativeToken, _fundingToken,
_stable);

 if (pairAddress != address(0)) {

 require(IERC20(nativeToken).balanceOf(pairAddress) == 0, "!ZV");

 require(IERC20(_fundingToken).balanceOf(pairAddress) == 0,
"!ZV");

 }

 //........................more code

Attack Scenario:

An attacker can observe a pending createGenesisPool transaction (or the
GenesisCreated event). The attacker can:

●​ Call pairFactory.createPair(nativeToken, fundingToken, stable) to create a
new, empty LP pair for the target tokens.

●​ Immediately after, transfer a minimal non-zero amount (e.g., 1 wei) of both
nativeToken and fundingToken directly to this newly created pair contract
address.

Impact

When the legitimate depositNativeToken transaction executes,
pairFactory.getPairwill return the attacker's pair address. The
require(IERC20(token).balanceOf(pairAddress) == 0, "!ZV");checks will then fail
because the pair now holds a non-zero balance of tokens. This causes the

legitimatedepositNativeToken` transaction to revert, resulting in:

●​ Denial of Service (DoS): Legitimate projects are repeatedly blocked from
launching their intended Genesis Pools.

●​ Griefing: An attacker can perform this attack with minimal gas cost, making it
a highly effective and low-cost method to disrupt the protocol's core
functionality.

Recommended mitigation steps

Add pair ownership or Origin validation. Instead of just checking balance == 0,
validate that your protocol created the pair, or that the pair was expected.

Blackhole mitigated

Status: Mitigation Complete. A courtesy review was conducted by MrPotatoMagic to
verify that this is mitigated.

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions?page=1&sortBy=most-severe&operator=OR&perPage=25&submissionUid=XVQQxFYhS55&exclude=spam&filter=unmitigated&commentParent=ST2PigrWvFb&commentChild=NidzoN265XB

[M-10] ERC-2612 permit front-running in RouterV2
enables DoS of liquidity operations

Submitted by PolarizedLight

The removeLiquidityWithPermit() and removeLiquidityETHWithPermit() functions in
RouterV2 are vulnerable to front-running attacks that consume user permit
signatures, causing legitimate liquidity removal transactions to revert and resulting in
gas fee losses and a DOS.

Finding description

The RouterV2 contract implements ERC-2612 permit functionality without protection
against front-running attacks. The vulnerability stems from the deterministic nature of
permit signatures and the lack of error handling when permit calls fail.

This vulnerability follows a well-documented attack pattern that has been extensively
researched. According to Trust Security's comprehensive disclosure in January
2024: https://www.trust-security.xyz/post/permission-denied

"Consider, though, a situation where permit() is part of a contract call:

function deposit(uint256 amount, bytes calldata _signature) external {

 // This will revert if permit() was front-run

 token.permit(msg.sender, address(this), amount, deadline, v, r, s);

 // User loses this functionality when permit fails

 stakingContract.deposit(msg.sender, amount);

}

This function deposits in a staking contract on behalf of the user. But what if an
attacker extracts the _signature parameters from the deposit() call and frontruns it
with a direct permit()? In this case, the end result is harmful, since the user loses
the functionality that follows the permit()."

In RouterV2's removeLiquidityWithPermit() follows this exact vulnerable pattern:

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d6347
8c4164d9f608e91/contracts/RouterV2.sol#L475-L475

https://code4rena.com/audits/2025-05-blackhole/submissions/F-173
https://code4rena.com/audits/2025-05-blackhole/submissions/F-173
https://code4rena.com/audits/2025-05-blackhole/submissions/S-410
https://www.trust-security.xyz/post/permission-denied
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L475-L475
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L475-L475

IBaseV1Pair(pair).permit(msg.sender, address(this), value, deadline, v, r,
s);

// User loses liquidity removal functionality when permit fails

(amountA, amountB) = removeLiquidity(tokenA, tokenB, stable, liquidity,

amountAMin, amountBMin, to, deadline);

As Trust Security formally identified: "In fact, any function call that unconditionally
performs permit() can be forced to revert this way."

The root cause of the issue within the blackhole protocol is that RouterV2 makes
unprotected external calls to LP token permit functions without any fallback
mechanism or error handling:

// Line 475 - No error handling

IBaseV1Pair(pair).permit(msg.sender, address(this), value, deadline, v, r,

s);

This creates a systematic vulnerability where any permit-based transaction can be
griefed by extracting and front-running the permit signature.

Code Location

●​ RouterV2.sol#L475 - removeLiquidityWithPermit() function
●​ RouterV2.sol#L493 - removeLiquidityETHWithPermit() function

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d6347
8c4164d9f608e91/contracts/RouterV2.sol#L475-L475

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d6347
8c4164d9f608e91/contracts/RouterV2.sol#L493

Impact

This vulnerability enables attackers to systematically deny service to users
attempting to remove liquidity through permit-based functions, resulting in direct
financial losses and protocol dysfunction.

●​ Users lose transaction fees (typically $5-50 per transaction depending on
network congestion) when their transactions revert.

●​ Users must pay additional gas for traditional approve+remove patterns.
●​ Liquidity removal becomes unreliable, forcing users to abandon efficient

permit-based operations.

https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L475-L475
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L475-L475
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L493
https://github.com/code-423n4/2025-05-blackhole/blob/92fff849d3b266e609e6d63478c4164d9f608e91/contracts/RouterV2.sol#L493

Attack Prerequisites:

●​ Minimal: Attacker needs only basic mempool monitoring capability and gas
fees.

●​ No special permissions or large capital requirements.
●​ Attack can be automated and executed repeatedly.
●​ Works against any user attempting permit-based operations.

Recommended mitigation steps

Implement a different method of permit handling by wrapping the permit call in a
try-catch block and only reverting if both the permit fails and the current allowance is
insufficient for the operation.

function removeLiquidityWithPermit(

 address tokenA,

 address tokenB,

 bool stable,

 uint liquidity,

 uint amountAMin,

 uint amountBMin,

 address to,

 uint deadline,

 bool approveMax,

 uint8 v,

 bytes32 r,

 bytes32 s

) external virtual override returns (uint amountA, uint amountB) {

 address pair = pairFor(tokenA, tokenB, stable);

 uint value = approveMax ? type(uint).max : liquidity;

 // Try permit, but don't revert if it fails

 try IBaseV1Pair(pair).permit(msg.sender, address(this), value, deadline,
v, r, s) {

 // Permit succeeded

 } catch {

 // Permit failed, check if we have sufficient allowance

 require(

 IBaseV1Pair(pair).allowance(msg.sender, address(this)) >=
liquidity,

 "Insufficient allowance"

);

 }

 (amountA, amountB) = removeLiquidity(tokenA, tokenB, stable, liquidity,
amountAMin, amountBMin, to, deadline);

}

This approach follows the industry-standard mitigation pattern that successfully
resolved this vulnerability across 100+ affected codebases.

Proof of Concept

Theoretical attack walkthrough:

1.​ Setup Phase:
○​ Alice holds 1000 LP tokens in pair 0xABC...
○​ Alice wants to remove liquidity efficiently using

removeLiquidityWithPermit()

○​ Bob (attacker) monitors the mempool for permit-based transactions
2.​ Signature Creation:

○​ Alice creates permit signature: permit(alice, routerV2, 1000,
deadline, nonce=5)

○​ Signature parameters: v=27, r=0x123..., s=0x456...
3.​ Transaction Submission:

○​ Alice submits: removeLiquidityWithPermit(tokenA, tokenB, false,
1000, 950, 950, alice, deadline, false, 27, 0x123..., 0x456...)

○​ Transaction enters mempool with 20 gwei gas price
4.​ Front-Running Execution:

○​ Bob extracts parameters from Alice's pending transaction
○​ Bob submits direct call: IBaseV1Pair(0xABC...).permit(alice,

routerV2, 1000, deadline, 27, 0x123..., 0x456...) with 25 gwei gas

○​ Bob's transaction mines first, consuming Alice's nonce (nonce
becomes 6)

5.​ Victim Transaction Failure:
○​ Alice's transaction executes but fails at line 475
○​ RouterV2 calls permit() with already-used signature
○​ LP token rejects due to invalid nonce (expects 6, gets signature for

nonce 5)
○​ Entire transaction reverts with "Invalid signature" or similar error

6.​ Attack Result:
○​ Alice loses ~$15 in gas fees (failed transaction cost)
○​ Alice cannot remove liquidity via permit method
○​ Bob spent ~$3 in gas to grief Alice
○​ Attack can be repeated indefinitely against any permit user

Impact Example:

●​ During high network activity (50+ gwei), failed transactions cost $25-75 each
●​ Systematic attacks against 100 users = $2,500-7,500 in direct user losses
●​ No recourse for affected users; losses are permanent

Blackhole mitigated

Status: Mitigation Complete. A courtesy review was conducted by MrPotatoMagic to
verify that this is mitigated.

👨‍⚖️ Judge Review:

The re-evaluation was performed by the competition judge MrPotatoMagic, an experienced
auditor whose credentials and prior work can be reviewed here.

“

Approved, the two respective issues (M-05 and M-10 from the public
Code4rena Blackhole DEX Report) outlined in this addendum have been
mitigated.

”​
 — Judge’s Comment

https://github.com/code-423n4/2025-06-blackhole-mitigation?tab=readme-ov-file#mitigation-of-high--medium-severity-issues
https://code4rena.com/audits/2025-06-blackhole-mitigation-review/submissions?page=1&sortBy=most-severe&operator=OR&perPage=25&submissionUid=34&exclude=spam&filter=unmitigated&commentParent=KuG8cD52MX7&commentChild=2gp6gtmB5MZ
https://github.com/mrpotatomagic/audit-portfolio/tree/main

	Addendum to Code4rena Audit Report
	Overview:

	[M-05] Griefing attack on GenesisPoolManager.sol::depositNativeToken leading to Denial of Service
	Finding description
	Impact
	
	Recommended mitigation steps

	
	[M-10] ERC-2612 permit front-running in RouterV2 enables DoS of liquidity operations
	Finding description
	Code Location
	Impact
	Recommended mitigation steps
	Proof of Concept
	👨‍⚖️ Judge Review:

